WWF Nepal, Baluwatar, Kathmandu, Nepal.
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
PLoS One. 2023 Jan 25;18(1):e0280824. doi: 10.1371/journal.pone.0280824. eCollection 2023.
Healthy natural forests maintain and/or enhances carbon stock while also providing potential habitat and an array of services to wildlife including large carnivores such as the tiger. This study is the first of its kind in assessing relationships between above-ground biomass carbon stock, tiger density and occupancy probability and its status in protected areas, corridors, and forest connectivity blocks. The dataset used to assess the relationship were: (1) Converged posterior tiger density estimates from camera trap data derived from Bayesian- Spatially Explicit Capture-Recapture model from Chitwan National Park; (2) Site wise probability of tiger occupancy estimated across the Terai Arc Landscape and (3) Habitat wise above-ground biomass carbon stock estimated across the Terai Arc Landscape. Carbon stock maps were derived based on eight habitat classes and conservation units linking satellite (Landsat 7 ETM+) images and field collected sampling data. A significant negative relationship (r = -0.20, p<0.01) was observed between above-ground biomass carbon stock and tiger density in Chitwan National Park and with tiger occupancy (r = -0.24, p = 0.023) in the landscape. Within protected areas, we found highest mean above-ground biomass carbon stock in high density mixed forest (223 tC/ha) and low in degraded scrubland (73.2 tC/ha). Similarly, we found: (1) highest tiger density ~ 0.06 individuals per 0.33 km2 in the riverine forest and lowest estimates (0.00) in degraded scrubland; and (2) predictive tiger density of 0.0135 individuals per 0.33 km2 is equivalent to mean total of 43.7 tC/ha in Chitwan National Park. Comparatively, we found similar above-ground biomass carbon stock among corridors, large forest connectivity blocks (117 tC/ha), and within in tiger bearing protected areas (~119 tC/ha). Carbon conservation through forest restoration particularly in riverine habitats (forest and grassland) and low transitional state forests (degraded scrubland) provides immense opportunities to generate win-win solutions, sequester more carbon and maintain habitat integrity for tigers and other large predators.
健康的天然森林保持和/或增加碳储量,同时为野生动物提供潜在的栖息地和一系列服务,包括大型食肉动物,如老虎。本研究首次评估了地上生物量碳储量、老虎密度和栖息地占有率及其在保护区、廊道和森林连通块中的地位之间的关系。用于评估关系的数据集包括:(1)来自 Chitwan 国家公园贝叶斯-空间显式捕获-再捕获模型的相机陷阱数据得出的收敛后老虎密度估计;(2)在 Terai Arc 景观中估计的每个地点老虎栖息地占有率;(3)在 Terai Arc 景观中估计的每个栖息地的地上生物量碳储量。碳储量图是根据八个生境类和保护单位生成的,这些保护单位将卫星(Landsat 7 ETM+)图像和实地收集的采样数据联系起来。在 Chitwan 国家公园,地上生物量碳储量与老虎密度之间存在显著的负相关关系(r = -0.20,p<0.01),与景观中的老虎栖息地占有率之间也存在显著的负相关关系(r = -0.24,p = 0.023)。在保护区内,我们发现高密度混合林的平均地上生物量碳储量最高(223 tC/ha),而退化的灌丛最低(73.2 tC/ha)。同样,我们发现:(1) 河流林的老虎密度最高,约为每 0.33 km2 有 0.06 只,而退化的灌丛中则为最低(0.00);(2) 老虎预测密度为每 0.33 km2 有 0.0135 只,相当于 Chitwan 国家公园每公顷 43.7 tC 的平均总量。相比之下,我们发现廊道、大型森林连通块(117 tC/ha)和有老虎的保护区内的地上生物量碳储量相似(~119 tC/ha)。通过森林恢复实现碳保护,特别是在河流生境(森林和草原)和低过渡状态森林(退化灌丛)中,为创造双赢解决方案、封存更多碳并维持老虎和其他大型捕食者的栖息地完整性提供了巨大机会。