University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France.
Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
PLoS Pathog. 2023 Jan 25;19(1):e1011023. doi: 10.1371/journal.ppat.1011023. eCollection 2023 Jan.
Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.
铜绿假单胞菌是一种机会性革兰氏阴性病原体,是菌血症的主要致病原因,死亡率很高。我们最近报道称,铜绿假单胞菌在人血浆中形成一种类似于持久性亚群的逃避者。在这里,我们通过在血浆中进行功能获得性转座子测序(Tn-seq)筛选,鉴定并验证了先前未知的影响细菌在血浆中持久性的因素。其中,我们鉴定出一种小的周质蛋白,命名为 SrgA,其表达可使细菌对杀伤的抵抗力提高 100 倍。此外,pur 和 bio 基因的突变体分别表现出更高的耐受性和持久性。对补体级联的几个步骤的分析以及对外膜不可渗透药物乳链菌肽的暴露表明,突变体本身会阻碍膜攻击复合物(MAC)的活性。电子显微镜结合能量色散 X 射线光谱(EDX)显示,在不同大小的 purD 和野生型菌株的血浆孵育后,形成了不同大小的多磷酸盐(polyP)颗粒,这意味着细菌对应激信号的反应。事实上,失活编码多聚磷酸盐生成酶的 ppk 基因可显著消除血浆中持续存在的细菌。通过这项研究,我们揭示了铜绿假单胞菌对血浆条件的复杂反应,并发现了细菌对 MAC 诱导杀伤的弹性的多因素起源。