Suppr超能文献

双特异性抗体靶向肺血管系统中铜绿假单胞菌的多种逃逸机制。

Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature.

作者信息

Thanabalasuriar Ajitha, Surewaard Bas Gj, Willson Michelle E, Neupane Arpan S, Stover Charles K, Warrener Paul, Wilson George, Keller Ashley E, Sellman Bret R, DiGiandomenico Antonio, Kubes Paul

机构信息

Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.

MedImmune LLC, Gaithersburg, Maryland, USA.

出版信息

J Clin Invest. 2017 Jun 1;127(6):2249-2261. doi: 10.1172/JCI89652. Epub 2017 May 2.

Abstract

Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen's presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.

摘要

铜绿假单胞菌是导致菌血症和患者高死亡率的严重感染的主要原因。铜绿假单胞菌已进化出多种逃避和颠覆机制,这些机制协同作用,以克服住院患者和免疫抑制个体的免疫识别和效应功能。在这里,我们使用多激光旋转盘活体显微镜来监测铜绿假单胞菌感染小鼠菌血症模型中的血行阶段。铜绿假单胞菌 avidly 粘附于肺血管,在那里巡逻的中性粒细胞和其他免疫细胞实际上对病原体的存在视而不见。这种隐身现象归因于 Psl 胞外多糖的表达。尽管抗 Psl mAb 激活补体并增强中性粒细胞对铜绿假单胞菌的识别,但由于第二种颠覆机制,即 3 型分泌(T3S)注射体,中性粒细胞介导的病原体清除并不理想。事实上,T3S 阻止吞噬体酸化并抵抗这些隔室内的杀伤。抗体介导的对 T3S 蛋白 PcrV 的抑制并没有增强细菌吞噬作用,但确实增强了对被中性粒细胞摄取的少数细菌的杀伤。靶向 Psl 和 PcrV 的双特异性 mAb 增强了中性粒细胞对铜绿假单胞菌的摄取,也大大增加了对 T3S 功能的抑制,允许吞噬体酸化和细菌杀伤。这些数据强调了串联阻断多种逃避和颠覆机制以杀死铜绿假单胞菌的必要性。

相似文献

1
Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature.
J Clin Invest. 2017 Jun 1;127(6):2249-2261. doi: 10.1172/JCI89652. Epub 2017 May 2.
2
Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa.
Hum Vaccin Immunother. 2014;10(10):2843-52. doi: 10.4161/21645515.2014.971641.
5
PcrV antibody protects multi-drug resistant Pseudomonas aeruginosa induced acute lung injury.
Respir Physiol Neurobiol. 2014 Mar 1;193:21-8. doi: 10.1016/j.resp.2014.01.001. Epub 2014 Jan 10.
6
A multifunctional bispecific antibody protects against Pseudomonas aeruginosa.
Sci Transl Med. 2014 Nov 12;6(262):262ra155. doi: 10.1126/scitranslmed.3009655.
7
A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models.
Antimicrob Agents Chemother. 2014 Aug;58(8):4384-91. doi: 10.1128/AAC.02643-14. Epub 2014 May 19.
9
Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV.
J Infect Dis. 2002 Jul 1;186(1):64-73. doi: 10.1086/341069. Epub 2002 Jun 14.
10
Epidemiological analysis of serum anti-Pseudomonas aeruginosa PcrV titers in adults.
Microbiol Immunol. 2016 Feb;60(2):114-20. doi: 10.1111/1348-0421.12353.

引用本文的文献

1
The eATP/P2×7R Axis Drives Quantum Dot-Nanoparticle Induced Neutrophil Recruitment in the Pulmonary Microcirculation.
Adv Sci (Weinh). 2024 Dec;11(45):e2404661. doi: 10.1002/advs.202404661. Epub 2024 Oct 4.
2
Alveolar macrophage function is impaired following inhalation of berry e-cigarette vapor.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2406294121. doi: 10.1073/pnas.2406294121. Epub 2024 Sep 23.
4
Intravital Microscopy for Imaging and Live Cell Tracking of Alveolar Macrophages in Real Time.
Methods Mol Biol. 2024;2813:189-204. doi: 10.1007/978-1-0716-3890-3_13.
5
Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair.
Int J Mol Sci. 2024 Apr 5;25(7):4051. doi: 10.3390/ijms25074051.
6
Development and validation of a rabbit model of non-ventilated pneumonia for preclinical drug development.
Front Cell Infect Microbiol. 2023 Dec 11;13:1297281. doi: 10.3389/fcimb.2023.1297281. eCollection 2023.
7
Alternative therapeutic strategies to treat antibiotic-resistant pathogens.
Nat Rev Microbiol. 2024 May;22(5):262-275. doi: 10.1038/s41579-023-00993-0. Epub 2023 Dec 11.
8
Subversion of the Complement System by Pseudomonas aeruginosa.
J Bacteriol. 2023 Aug 24;205(8):e0001823. doi: 10.1128/jb.00018-23. Epub 2023 Jul 12.
9
Self-assembled ferritin nanoparticles displaying PcrV and OprI as an adjuvant-free vaccine.
Front Immunol. 2023 Jun 21;14:1184863. doi: 10.3389/fimmu.2023.1184863. eCollection 2023.
10
Intravital imaging of three different microvascular beds in SARS-CoV-2-infected mice.
Blood Adv. 2023 Aug 8;7(15):4170-4181. doi: 10.1182/bloodadvances.2022009430.

本文引用的文献

1
A cohort study of bacteremic pneumonia: The importance of antibiotic resistance and appropriate initial therapy?
Medicine (Baltimore). 2016 Aug;95(35):e4708. doi: 10.1097/MD.0000000000004708.
2
CRIg Functions as a Macrophage Pattern Recognition Receptor to Directly Bind and Capture Blood-Borne Gram-Positive Bacteria.
Cell Host Microbe. 2016 Jul 13;20(1):99-106. doi: 10.1016/j.chom.2016.06.002. Epub 2016 Jun 23.
3
Identification and treatment of the Staphylococcus aureus reservoir in vivo.
J Exp Med. 2016 Jun 27;213(7):1141-51. doi: 10.1084/jem.20160334. Epub 2016 Jun 20.
5
Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MB-0011-2014.
7
A multifunctional bispecific antibody protects against Pseudomonas aeruginosa.
Sci Transl Med. 2014 Nov 12;6(262):262ra155. doi: 10.1126/scitranslmed.3009655.
8
Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection.
PLoS Genet. 2014 Jul 24;10(7):e1004518. doi: 10.1371/journal.pgen.1004518. eCollection 2014 Jul.
9
Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.
Am J Physiol Lung Cell Mol Physiol. 2014 Apr 1;306(7):L591-603. doi: 10.1152/ajplung.00335.2013. Epub 2014 Jan 24.
10
Pseudomonas aeruginosa utilizes the type III secreted toxin ExoS to avoid acidified compartments within epithelial cells.
PLoS One. 2013 Sep 18;8(9):e73111. doi: 10.1371/journal.pone.0073111. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验