Suppr超能文献

长期暴露于大气 PM/NO 和学龄儿童呼吸道健康:香港的一项前瞻性队列研究。

Chronic exposure to ambient PM/NO and respiratory health in school children: A prospective cohort study in Hong Kong.

机构信息

Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.

Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong, China; Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Ecotoxicol Environ Saf. 2023 Mar 1;252:114558. doi: 10.1016/j.ecoenv.2023.114558. Epub 2023 Jan 23.

Abstract

Despite increasing concerns about the detrimental effects of air pollution on respiratory health, limited evidence is available on these effects in the Hong Kong population, especially in children. In this prospective cohort study between 2012 and 2017, we aimed to investigate the associations between exposure to air pollution (concentrations of fine particulate matter [PM] and nitrogen dioxide [NO]) and respiratory health (lung function parameters and respiratory diseases and symptoms) in schoolchildren. We recruited 5612 schoolchildren aged 6-16 years in Hong Kong. We estimated the annual average concentrations of ambient PM and NO at each participant's address using spatiotemporal models. We conducted spirometry tests on all participants to measure their lung function parameters and used a self-administered questionnaire to collect information on their respiratory diseases and symptoms and a wide range of covariates. Linear mixed models were used to investigate the associations between exposure to air pollution and lung function. Mixed-effects logistic regression models with random effects were used to investigate the associations of exposure to air pollution with respiratory diseases and symptoms. In all of the participants, every 5-μg/m increase in the ambient PM concentration was associated with changes of - 13.90 ml (95 % confidence interval [CI]: -23.65 ml, -4.10 ml), - 4.20 ml (-15.60 ml, 7.15 ml), 27.20 ml/s (-3.95 ml/s, 58.35 ml/s), and - 19.80 ml/s (-38.35 ml/s, -1.25 ml/s) in forced expiratory volume in 1 s, forced vital capacity, peak expiratory flow, and maximal mid-expiratory flow, respectively. The corresponding lung function estimates for every 5-μg/m increase in the ambient NO concentration were - 2.70 ml (-6.05 ml, 0.60 ml), - 1.40 ml (-5.40 ml, 2.60 ml), - 6.60 ml/s (-19.75 ml/s, 6.55 ml/s), and - 3.05 ml/s (-11.10 ml/s, 5.00 ml/s), respectively. We did not observe significant associations between PM/NO exposure and most respiratory diseases and symptoms. Stratified analyses by sex and age showed that the associations between exposure to air pollution and lung function parameters were stronger in male participants and older participants (11-14 year old group) than in female participants and younger participants (6-10 year old group), respectively. Our results suggest that chronic exposure to air pollution is detrimental to the respiratory health of schoolchildren, especially that of older boys. Our findings reinforce the importance of air pollution mitigation to protect schoolchildren's respiratory health.

摘要

尽管人们越来越关注空气污染对呼吸健康的有害影响,但香港人群,尤其是儿童,对此类影响的证据有限。在这项 2012 年至 2017 年期间进行的前瞻性队列研究中,我们旨在调查空气污染(细颗粒物 [PM] 和二氧化氮 [NO] 浓度)暴露与儿童呼吸健康(肺功能参数和呼吸道疾病及症状)之间的关联。我们在香港招募了 5612 名 6-16 岁的学龄儿童。我们使用时空模型估计每个参与者住址处的环境 PM 和 NO 的年平均浓度。我们对所有参与者进行了肺活量测定,以测量其肺功能参数,并使用自填问卷收集他们的呼吸道疾病和症状以及广泛的协变量信息。线性混合模型用于研究空气污染暴露与肺功能之间的关系。混合效应逻辑回归模型与随机效应一起用于研究空气污染暴露与呼吸道疾病和症状的关系。在所有参与者中,环境 PM 浓度每增加 5μg/m,用力呼气量 1 秒(FEV1)下降-13.90ml(95%置信区间 [CI]:-23.65ml,-4.10ml),用力肺活量下降-4.20ml(-15.60ml,7.15ml),呼气峰流速增加 27.20ml/s(-3.95ml/s,58.35ml/s),最大中期呼气流速下降-19.80ml/s(-38.35ml/s,-1.25ml/s)。环境 NO 浓度每增加 5μg/m,FEV1 下降-2.70ml(-6.05ml,0.60ml),用力肺活量下降-1.40ml(-5.40ml,2.60ml),呼气峰流速下降-6.60ml/s(-19.75ml/s,6.55ml/s),最大中期呼气流速下降-3.05ml/s(-11.10ml/s,5.00ml/s)。我们没有观察到 PM/NO 暴露与大多数呼吸道疾病和症状之间存在显著关联。按性别和年龄进行的分层分析表明,空气污染暴露与肺功能参数之间的关联在男性参与者和年龄较大的参与者(11-14 岁组)中强于女性参与者和年龄较小的参与者(6-10 岁组)。我们的结果表明,慢性暴露于空气污染会损害学龄儿童的呼吸健康,尤其是年龄较大的男孩。我们的研究结果强调了减少空气污染以保护儿童呼吸健康的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验