Javeed Saad, Zhang Justin K, Greenberg Jacob K, Dibble Christopher F, Zellmer Eric, Moran Dan, Leuthardt Eric C, Ray Wilson Z, MacEwan Matthew R
Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
Int J Spine Surg. 2023 Feb;17(1):95-102. doi: 10.14444/8389. Epub 2023 Jan 25.
Direct current electrical stimulation may serve as a promising nonpharmacological adjunct promoting osteogenesis and fusion. The aim of this study was to evaluate the utility of electroactive spine instrumentation in the focal delivery of therapeutic electrical stimulation to enhance lumbar bone formation and interbody fusion.
A finite element model of adult human lumbar spine (L4-L5) instrumented with single-level electroactive pedicle screws was simulated. Direct current electrical stimulation was routed through anodized electroactive pedicle screws to target regions of fusion. The electrical fields generated by electroactive pedicle screws were evaluated in various tissue compartments including isotropic tissue volumes, cortical, and trabecular bone. Electrical field distributions at various stimulation amplitudes (20-100 µA) and pedicle screw anodization patterns were analyzed in target regions of fusion (eg, intervertebral disc space, vertebral body, and pedicles).
Electrical stimulation with electroactive pedicle screws at various stimulation amplitudes and anodization patterns enabled modulation of spatial distribution and intensity of electric fields within the target regions of lumbar spine. Anodized screws (50%) vs unanodized screws (0%) induced high-amplitude electric fields within the intervertebral disc space and vertebral body but negligible electric fields in spinal canal. Direct current electrical stimulation via anodized screws induced electrical fields, at therapeutic threshold of >1 mV/cm, sufficient for osteoinduction within the target interbody region.
Selective anodization of electroactive pedicle screws may enable focal delivery of therapeutic electrical stimulation in the target regions in human lumbar spine. This study warrants preclinical and clinical testing of integrated electroactive system in inducing target lumbar fusion in vivo.
The findings of this study provide a foundation for clinically investigating electroactive intrumentation to enhance spine fusion.
直流电刺激可能是一种有前景的促进骨生成和融合的非药物辅助手段。本研究的目的是评估电活性脊柱器械在局部递送治疗性电刺激以增强腰椎骨形成和椎间融合方面的效用。
模拟了植入单级电活性椎弓根螺钉的成年人类腰椎(L4 - L5)的有限元模型。直流电刺激通过阳极氧化的电活性椎弓根螺钉传导至融合目标区域。在包括各向同性组织体积、皮质骨和小梁骨在内的各种组织腔室中评估电活性椎弓根螺钉产生的电场。分析了融合目标区域(如椎间盘间隙、椎体和椎弓根)在不同刺激幅度(20 - 100 μA)和椎弓根螺钉阳极氧化模式下的电场分布。
在不同刺激幅度和阳极氧化模式下,电活性椎弓根螺钉进行电刺激能够调节腰椎目标区域内电场的空间分布和强度。阳极氧化螺钉(50%)与未阳极氧化螺钉(0%)相比,在椎间盘间隙和椎体内诱导出高幅度电场,但椎管内电场可忽略不计。通过阳极氧化螺钉进行的直流电刺激在治疗阈值>1 mV/cm时诱导出电场,足以在目标椎间区域实现骨诱导。
电活性椎弓根螺钉的选择性阳极氧化可能实现对人类腰椎目标区域的治疗性电刺激的局部递送。本研究有必要对集成电活性系统在体内诱导目标腰椎融合方面进行临床前和临床测试。
本研究结果为临床上研究电活性器械以增强脊柱融合提供了基础。