Cruz Carolina, Johansson Patrik
Department of Physics, Chalmers University of Technology, 41296, Gothenburg, Sweden.
Alistore-ERI, CNRS FR 3104, 15 Rue Baudelocque, 80039, Amiens, France.
Chemphyschem. 2025 Aug 4;26(15):e202500090. doi: 10.1002/cphc.202500090. Epub 2025 Jun 24.
Calcium batteries (CaBs) fundamentally offer a promise of sustainable high energy density storage. However, the development of functional CaB electrolytes remains a key challenge. Here, molecular simulations are used to investigate structural and dynamic properties of solvent-free molten salt electrolytes (MSEs) containing and alkali cations ( , , ), paired with either FSI or TFSI anions. Two equimolar MSEs, [Li, Na, K, Ca]FSI and [Li, Na, K, Ca] TFSI, are examined across a range of temperatures to better understand cation-anion interactions, coordination and local structure, and ion mobility, in particular with respect to . The interplay between cation charge density, anion structure, and thermal effects provides valuable insights into the MSEs' macroscopic behavior. These insights inform the design of advanced electrolytes that enhance mobility, supporting the development of next-generation CaBs.
钙电池(CaBs)从根本上为可持续的高能量密度存储带来了希望。然而,功能性钙电池电解质的开发仍然是一个关键挑战。在此,分子模拟被用于研究含碱金属阳离子(Li⁺、Na⁺、K⁺)以及与FSI或TFSI阴离子配对的钙阳离子的无溶剂熔盐电解质(MSEs)的结构和动力学性质。研究了两种等摩尔的MSEs,即[Li, Na, K, Ca]FSI和[Li, Na, K, Ca]TFSI,在一系列温度范围内的情况,以更好地理解阳离子 - 阴离子相互作用、配位和局部结构,以及离子迁移率,特别是关于Ca²⁺的迁移率。阳离子电荷密度、阴离子结构和热效应之间的相互作用为MSEs的宏观行为提供了有价值的见解。这些见解为增强Ca²⁺迁移率的先进电解质设计提供了依据,支持下一代钙电池的开发。