Suzana Ana F, Wu Longlong, Assefa Tadesse A, Williams Benjamin P, Harder Ross, Cha Wonsuk, Kuo Chun-Hong, Tsung Chia-Kuang, Robinson Ian K
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, USA.
Commun Chem. 2021 May 11;4(1):64. doi: 10.1038/s42004-021-00500-7.
Palladium absorbs large volumetric quantities of hydrogen at room temperature and ambient pressure, making the palladium hydride system a promising candidate for hydrogen storage. Here, we use Bragg coherent diffraction imaging to map the strain associated with defects in three dimensions before and during the hydride phase transformation of an individual octahedral palladium nanoparticle, synthesized using a seed-mediated approach. The displacement distribution imaging unveils the location of the seed nanoparticle in the final nanocrystal. By comparing our experimental results with a finite-element model, we verify that the seed nanoparticle causes a characteristic displacement distribution of the larger nanocrystal. During the hydrogen exposure, the hydride phase is predominantly formed on one tip of the octahedra, where there is a high number of lower coordinated Pd atoms. Our experimental and theoretical results provide an unambiguous method for future structure optimization of seed-mediated nanoparticle growth and in the design of palladium-based hydrogen storage systems.
钯在室温和常压下能吸收大量氢气,这使得钯氢化物体系成为一种很有前景的储氢候选材料。在此,我们使用布拉格相干衍射成像技术,对通过种子介导法合成的单个八面体钯纳米颗粒在氢化物相变之前和期间的三维缺陷相关应变进行映射。位移分布成像揭示了种子纳米颗粒在最终纳米晶体中的位置。通过将我们的实验结果与有限元模型进行比较,我们验证了种子纳米颗粒会导致较大纳米晶体产生特征性的位移分布。在氢气暴露过程中,氢化物相主要在八面体的一个尖端形成,那里有大量低配位的钯原子。我们的实验和理论结果为未来种子介导的纳米颗粒生长的结构优化以及钯基储氢系统的设计提供了一种明确的方法。