Plant Arran George, Kos Bor, Jazbec Anže, Snoj Luka, Najdanovic-Visak Vesna, Joyce Malcolm John
Engineering Department, Lancaster University, Lancaster, UK.
Jožef Stefan Institute, Ljubljana, Slovenia.
Commun Chem. 2021 Sep 17;4(1):132. doi: 10.1038/s42004-021-00572-5.
Non-intermittent, low-carbon energy from nuclear or biofuels is integral to many strategies to achieve Carbon Budget Reduction targets. However, nuclear plants have high, upfront costs and biodiesel manufacture produces waste glycerol with few secondary uses. Combining these technologies, to precipitate valuable feedstocks from waste glycerol using ionizing radiation, could diversify nuclear energy use whilst valorizing biodiesel waste. Here, we demonstrate solketal (2,2-dimethyl-1,3-dioxolane-4-yl) and acetol (1-hydroxypropan-2-one) production is enhanced in selected aqueous glycerol-acetone mixtures with γ radiation with yields of 1.5 ± 0.2 µmol J and 1.8 ± 0.2 µmol J, respectively. This is consistent with the generation of either the stabilized, protonated glycerol cation (CHOH-CHOH-CHOH) from the direct action of glycerol, or the hydronium species, HO, via water radiolysis, and their role in the subsequent acid-catalyzed mechanisms for acetol and solketal production. Scaled to a hypothetically compatible range of nuclear facilities in Europe (i.e., contemporary Pressurised Water Reactor designs or spent nuclear fuel stores), we estimate annual solketal production at approximately (1.0 ± 0.1) × 10 t year. Given a forecast increase of 5% to 20% v/v% in the renewable proportion of commercial petroleum blends by 2030, nuclear-driven, biomass-derived solketal could contribute towards net-zero emissions targets, combining low-carbon co-generation and co-production.
来自核能或生物燃料的非间歇性低碳能源是实现碳预算削减目标的许多战略的核心。然而,核电站前期成本高昂,生物柴油生产会产生几乎没有二次用途的废甘油。将这些技术结合起来,利用电离辐射从废甘油中沉淀出有价值的原料,可以使核能利用多样化,同时使生物柴油废物增值。在此,我们证明在选定的甘油 - 丙酮水溶液混合物中,γ辐射可提高缩酮(2,2 - 二甲基 - 1,3 - 二氧戊环 - 4 - 基)和丙酮醇(1 - 羟基 - 2 - 丙酮)的产量,产率分别为1.5±0.2 μmol/J和1.8±0.2 μmol/J。这与通过甘油的直接作用产生稳定的质子化甘油阳离子(CHOH - CHOH - CHOH)或通过水辐射分解产生水合氢离子HO及其在随后的丙酮醇和缩酮生产的酸催化机制中的作用一致。按欧洲假设兼容的一系列核设施(即当代压水反应堆设计或乏核燃料储存库)规模计算,我们估计缩酮的年产量约为(1.0 ± 0.1)×10⁶吨/年。鉴于预计到2030年商业石油混合物的可再生比例将提高5%至20%(体积/体积%),核驱动的、源自生物质的缩酮可以结合低碳热电联产和联合生产,为实现净零排放目标做出贡献。