Allum Felix, Music Valerija, Inhester Ludger, Boll Rebecca, Erk Benjamin, Schmidt Philipp, Baumann Thomas M, Brenner Günter, Burt Michael, Demekhin Philipp V, Dörner Simon, Ehresmann Arno, Galler Andreas, Grychtol Patrik, Heathcote David, Kargin Denis, Larsson Mats, Lee Jason W L, Li Zheng, Manschwetus Bastian, Marder Lutz, Mason Robert, Meyer Michael, Otto Huda, Passow Christopher, Pietschnig Rudolf, Ramm Daniel, Schubert Kaja, Schwob Lucas, Thomas Richard D, Vallance Claire, Vidanović Igor, von Korff Schmising Clemens, Wagner René, Walter Peter, Zhaunerchyk Vitali, Rolles Daniel, Bari Sadia, Brouard Mark, Ilchen Markus
The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
Commun Chem. 2022 Mar 28;5(1):42. doi: 10.1038/s42004-022-00656-w.
Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d and 4d atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.
内壳层光电子能谱提供了一种针对分子结构的元素特异性探测手段,因为内层电子结合能对化学环境敏感。短波长飞秒光源,如自由电子激光(FEL),甚至能够对分子光化学进行时间分辨的位点特异性研究。在此,我们研究了典型手性分子1-碘-2-甲基丁烷的紫外光解离过程,通过汉堡自由电子激光(FLASH)产生的极紫外(XUV)脉冲,利用碘4d结合能的超快演化进行探测。在方法上,我们采用电子-离子部分协方差成像技术,以分离二维光电子能谱中由不同光解离途径产生的难以捉摸的特征。通过该方法解缠的4d以及4d原子和分子能级的时间分辨电子能谱的实验和理论结果,为从特定旁观者位点研究结构和化学变化迈出了关键一步。