Rapetti Daniele, Delle Piane Massimo, Cioni Matteo, Polino Daniela, Ferrando Riccardo, Pavan Giovanni M
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962, Lugano-Viganello, Switzerland.
Commun Chem. 2023 Jul 5;6(1):143. doi: 10.1038/s42004-023-00936-z.
It is known that metal nanoparticles (NPs) may be dynamic and atoms may move within them even at fairly low temperatures. Characterizing such complex dynamics is key for understanding NPs' properties in realistic regimes, but detailed information on, e.g., the stability, survival, and interconversion rates of the atomic environments (AEs) populating them are non-trivial to attain. In this study, we decode the intricate atomic dynamics of metal NPs by using a machine learning approach analyzing high-dimensional data obtained from molecular dynamics simulations. Using different-shape gold NPs as a representative example, an AEs' dictionary allows us to label step-by-step the individual atoms in the NPs, identifying the native and non-native AEs and populating them along the MD simulations at various temperatures. By tracking the emergence, annihilation, lifetime, and dynamic interconversion of the AEs, our approach permits estimating a "statistical equivalent identity" for metal NPs, providing a comprehensive picture of the intrinsic atomic dynamics that shape their properties.
众所周知,金属纳米颗粒(NPs)可能是动态的,即使在相当低的温度下,原子也可能在其中移动。表征这种复杂的动力学是理解NPs在实际情况下性质的关键,但要获得关于填充它们的原子环境(AEs)的稳定性、存活情况和相互转化率等详细信息并非易事。在本研究中,我们通过使用机器学习方法分析从分子动力学模拟获得的高维数据,来解码金属NPs复杂的原子动力学。以不同形状的金纳米颗粒作为代表性示例,一个AEs字典使我们能够逐步标记NPs中的各个原子,识别天然和非天然的AEs,并在不同温度下沿着分子动力学模拟对它们进行填充。通过追踪AEs的出现、湮灭、寿命和动态相互转化,我们的方法允许估计金属NPs的“统计等效身份”,提供塑造其性质的内在原子动力学的全面图景。