文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

内质网膜上翻译和蛋白质生物发生的可视化。

Visualization of translation and protein biogenesis at the ER membrane.

机构信息

Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.

Thermo Fisher Scientific, Eindhoven, The Netherlands.

出版信息

Nature. 2023 Feb;614(7946):160-167. doi: 10.1038/s41586-022-05638-5. Epub 2023 Jan 25.


DOI:10.1038/s41586-022-05638-5
PMID:36697828
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9892003/
Abstract

The dynamic ribosome-translocon complex, which resides at the endoplasmic reticulum (ER) membrane, produces a major fraction of the human proteome. It governs the synthesis, translocation, membrane insertion, N-glycosylation, folding and disulfide-bond formation of nascent proteins. Although individual components of this machinery have been studied at high resolution in isolation, insights into their interplay in the native membrane remain limited. Here we use cryo-electron tomography, extensive classification and molecular modelling to capture snapshots of mRNA translation and protein maturation at the ER membrane at molecular resolution. We identify a highly abundant classical pre-translocation intermediate with eukaryotic elongation factor 1a (eEF1a) in an extended conformation, suggesting that eEF1a may remain associated with the ribosome after GTP hydrolysis during proofreading. At the ER membrane, distinct polysomes bind to different ER translocons specialized in the synthesis of proteins with signal peptides or multipass transmembrane proteins with the translocon-associated protein complex (TRAP) present in both. The near-complete atomic model of the most abundant ER translocon variant comprising the protein-conducting channel SEC61, TRAP and the oligosaccharyltransferase complex A (OSTA) reveals specific interactions of TRAP with other translocon components. We observe stoichiometric and sub-stoichiometric cofactors associated with OSTA, which are likely to include protein isomerases. In sum, we visualize ER-bound polysomes with their coordinated downstream machinery.

摘要

动态核糖体-易位子复合物位于内质网膜上,是人类蛋白质组的主要产生者。它控制着新生蛋白质的合成、易位、膜插入、N-糖基化、折叠和二硫键形成。尽管该机器的各个组件已经在分离状态下进行了高分辨率研究,但对它们在天然膜中的相互作用的了解仍然有限。在这里,我们使用冷冻电子断层扫描、广泛的分类和分子建模,以分子分辨率捕获内质网膜上 mRNA 翻译和蛋白质成熟的快照。我们鉴定了一种高度丰富的经典的前易位中间体,其中真核延伸因子 1a(eEF1a)呈伸展构象,这表明 eEF1a 可能在 GTP 水解后在校对过程中仍与核糖体结合。在内质网膜上,不同的多核糖体与不同的内质网易位子结合,这些易位子专门用于合成带有信号肽的蛋白质或具有跨膜蛋白的多通道蛋白,TRAP 存在于两者中。最丰富的内质网易位子变体的近完整原子模型包括蛋白导通道 SEC61、TRAP 和寡糖基转移酶复合物 A(OSTA),揭示了 TRAP 与其他易位子组件的特定相互作用。我们观察到与 OSTA 相关的化学计量和亚化学计量的辅助因子,这些因子可能包括蛋白异构酶。总之,我们可视化了与内质网结合的多核糖体及其协调的下游机器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/c360488ded16/41586_2022_5638_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/48adf261145a/41586_2022_5638_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/6f3299e8655f/41586_2022_5638_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/b52a4d084887/41586_2022_5638_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/e45a88825c40/41586_2022_5638_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/4a59df7fb7cd/41586_2022_5638_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/624249bfb3a6/41586_2022_5638_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/8b2b45635d46/41586_2022_5638_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/227c1cb6a241/41586_2022_5638_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/b2ef4f83da74/41586_2022_5638_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/9de2ed048c01/41586_2022_5638_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/bcc5d5c6d65c/41586_2022_5638_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/b16ad1086c8c/41586_2022_5638_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/5c72235d75f3/41586_2022_5638_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/c360488ded16/41586_2022_5638_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/48adf261145a/41586_2022_5638_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/6f3299e8655f/41586_2022_5638_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/b52a4d084887/41586_2022_5638_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/e45a88825c40/41586_2022_5638_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/4a59df7fb7cd/41586_2022_5638_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/624249bfb3a6/41586_2022_5638_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/8b2b45635d46/41586_2022_5638_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/227c1cb6a241/41586_2022_5638_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/b2ef4f83da74/41586_2022_5638_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/9de2ed048c01/41586_2022_5638_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/bcc5d5c6d65c/41586_2022_5638_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/b16ad1086c8c/41586_2022_5638_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/5c72235d75f3/41586_2022_5638_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6dd/9892003/c360488ded16/41586_2022_5638_Fig14_ESM.jpg

相似文献

[1]
Visualization of translation and protein biogenesis at the ER membrane.

Nature. 2023-2

[2]
An ER translocon for multi-pass membrane protein biogenesis.

Elife. 2020-8-21

[3]
Functions and Mechanisms of the Human Ribosome-Translocon Complex.

Subcell Biochem. 2019

[4]
The Ribosome-Sec61 Translocon Complex Forms a Cytosolically Restricted Environment for Early Polytopic Membrane Protein Folding.

J Biol Chem. 2015-11-27

[5]
Substrate-driven assembly of a translocon for multipass membrane proteins.

Nature. 2022-11

[6]
Exploring the molecular composition of the multipass translocon in its native membrane environment.

Life Sci Alliance. 2024-8

[7]
Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum.

J Biol Chem. 2014-9-12

[8]
A clearer picture of the ER translocon complex.

J Cell Sci. 2020-2-4

[9]
Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane.

Mol Cell Proteomics. 2020-11

[10]
Molecular view of ER membrane remodeling by the Sec61/TRAP translocon.

EMBO Rep. 2023-12-6

引用本文的文献

[1]
Human protein synthesis requires aminoacyl-tRNA pivoting during proofreading.

Nat Commun. 2025-9-2

[2]
Integrated structural biology of the native malarial translation machinery and its inhibition by an antimalarial drug.

Nat Struct Mol Biol. 2025-8-18

[3]
Targeting Eukaryotic Elongation Factor 1A: How Small-Molecule Inhibitors Suppress Tumor Growth via Diverse Pathways.

Int J Mol Sci. 2025-7-29

[4]
The Raman Map of the Human Cell.

Anal Chem. 2025-8-5

[5]
Human Protein Synthesis Requires aminoacyl-tRNA Pivoting During Proofreading.

bioRxiv. 2025-6-26

[6]
pytom-match-pick: A tophat-transform constraint for automated classification in template matching.

J Struct Biol X. 2025-5-2

[7]
N-glycan-dependent protein maturation and quality control in the ER.

Nat Rev Mol Cell Biol. 2025-5-19

[8]
Lipid Scrambling Pathways in the Sec61 Translocon Complex.

J Am Chem Soc. 2025-5-14

[9]
Proteomics-based characterization of ribosome heterogeneity in adult mouse organs.

Cell Mol Life Sci. 2025-4-24

[10]
Therapeutic mitochondria treatment amplifies macrophage-mediated phagocytosis and recycling exocytosis.

J Cereb Blood Flow Metab. 2025-3-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索