Suppr超能文献

使用 FCS 定量表征膜蛋白的可逆缔合。

Quantitative characterization of membrane-protein reversible association using FCS.

机构信息

Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain; Unidad de Nanobiotecnología, CNB-CSIC-IMDEA Nanociencia Associated Unit, 28049 Madrid, Spain.

Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain.

出版信息

Biophys J. 2023 Jun 6;122(11):2285-2300. doi: 10.1016/j.bpj.2023.01.026. Epub 2023 Jan 25.

Abstract

Functionally meaningful reversible protein-membrane interactions mediate many biological events. Fluorescence correlation spectroscopy (FCS) is increasingly used to quantitatively study the non-reversible binding of proteins to membranes using lipid vesicles in solution. However, the lack of a complete description of the phase and statistical equilibria in the case of reversible protein-membrane partitioning has hampered the application of FCS to quantify the partition coefficient (K). In this work, we further extend the theory that describes membrane-protein partitioning to account for spontaneous protein-membrane dissociation and reassociation to the same or a different lipid vesicle. We derive the probability distribution of proteins on lipid vesicles for reversible binding and demonstrate that FCS is a suitable technique for accurate K quantification of membrane-protein reversible association. We also establish the limits to K determination by FCS studying the Cramer-Rao bound on the variance of the retrieved parameters. We validate the mathematical formulation against reaction-diffusion simulations to study phase and statistical equilibria and compare the K obtained from a computational FCS titration experiment with the experimental ground truth. Finally, we demonstrate the application of our methodology studying the association of anti-HIV broadly neutralizing antibody (10E8-3R) to the membrane.

摘要

功能相关的蛋白质-膜相互作用介导了许多生物学事件。荧光相关光谱(FCS)技术越来越多地被用于定量研究蛋白质与膜的非可逆结合,方法是使用溶液中的脂质体。然而,由于缺乏对蛋白质-膜分配中可逆相和统计平衡的完整描述,阻碍了将 FCS 应用于量化分配系数(K)的进程。在这项工作中,我们进一步扩展了描述膜蛋白分配的理论,以解释自发的蛋白质-膜解离和再结合到相同或不同的脂质体的情况。我们推导出了用于可逆结合的蛋白质在脂质体上的概率分布,并证明了 FCS 是一种用于准确量化膜蛋白可逆结合的 K 的合适技术。我们还通过研究方差的克拉默-劳不等式(Cramer-Rao bound)来确定 FCS 对 K 测定的限制,该方差是从检索到的参数中获得的。我们根据反应扩散模拟验证了数学公式,以研究相和统计平衡,并将从计算 FCS 滴定实验中获得的 K 与实验的真实情况进行比较。最后,我们通过研究抗 HIV 广泛中和抗体(10E8-3R)与膜的结合来展示我们方法的应用。

相似文献

1
Quantitative characterization of membrane-protein reversible association using FCS.
Biophys J. 2023 Jun 6;122(11):2285-2300. doi: 10.1016/j.bpj.2023.01.026. Epub 2023 Jan 25.
2
Fluorescence Correlation Spectroscopy to Examine Protein-Lipid Interactions in Membranes.
Methods Mol Biol. 2019;2003:415-447. doi: 10.1007/978-1-4939-9512-7_18.
3
Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS).
Methods Mol Biol. 2014;1076:575-95. doi: 10.1007/978-1-62703-649-8_26.
5
6
Scanning fluorescence correlation spectroscopy in model membrane systems.
Methods Mol Biol. 2013;1033:185-205. doi: 10.1007/978-1-62703-487-6_13.
7
The effect of variable liposome brightness on quantifying lipid-protein interactions using fluorescence correlation spectroscopy.
Biochim Biophys Acta. 2011 Oct;1808(10):2559-68. doi: 10.1016/j.bbamem.2011.06.001. Epub 2011 Jun 12.
8
Fluorescence correlation spectroscopy to examine protein-lipid interactions in membranes.
Methods Mol Biol. 2013;974:253-78. doi: 10.1007/978-1-62703-275-9_12.
9
Quantifying membrane binding and diffusion with fluorescence correlation spectroscopy diffusion laws.
Biophys J. 2023 Jun 6;122(11):2216-2229. doi: 10.1016/j.bpj.2023.01.006. Epub 2023 Jan 10.
10
Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions.
Methods. 2008 Oct;46(2):116-22. doi: 10.1016/j.ymeth.2008.06.011. Epub 2008 Jul 15.

引用本文的文献

1
Dissecting the biophysical mechanisms of oleate hydratase association with membranes.
Front Mol Biosci. 2025 Jan 8;11:1504373. doi: 10.3389/fmolb.2024.1504373. eCollection 2024.
2
Analytical Form of the Fluorescence Correlation Spectroscopy Autocorrelation Function in Chemically Reactive Systems.
J Chem Theory Comput. 2024 Apr 9;20(7):2830-2841. doi: 10.1021/acs.jctc.3c01176. Epub 2024 Mar 22.
3
Membranes in focus.
Biophys J. 2023 Jun 6;122(11):E1-E4. doi: 10.1016/j.bpj.2023.05.005. Epub 2023 May 19.

本文引用的文献

1
Protein adsorption onto nanomaterials engineered for theranostic applications.
Nanotechnology. 2022 Apr 7;33(26). doi: 10.1088/1361-6528/ac5e6c.
2
The Bilayer Collective Properties Govern the Interaction of an HIV-1 Antibody with the Viral Membrane.
Biophys J. 2020 Jan 7;118(1):44-56. doi: 10.1016/j.bpj.2019.11.005. Epub 2019 Nov 14.
4
Fluorescence Correlation Spectroscopy to Examine Protein-Lipid Interactions in Membranes.
Methods Mol Biol. 2019;2003:415-447. doi: 10.1007/978-1-4939-9512-7_18.
6
Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics.
Front Chem. 2018 Jun 5;6:204. doi: 10.3389/fchem.2018.00204. eCollection 2018.
8
Functional Optimization of Broadly Neutralizing HIV-1 Antibody 10E8 by Promotion of Membrane Interactions.
J Virol. 2018 Mar 28;92(8). doi: 10.1128/JVI.02249-17. Print 2018 Apr 15.
9
Passive immunotherapy of viral infections: 'super-antibodies' enter the fray.
Nat Rev Immunol. 2018 May;18(5):297-308. doi: 10.1038/nri.2017.148. Epub 2018 Jan 30.
10
Measuring Protein Binding to Lipid Vesicles by Fluorescence Cross-Correlation Spectroscopy.
Biophys J. 2017 Sep 19;113(6):1311-1320. doi: 10.1016/j.bpj.2017.06.023. Epub 2017 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验