Suppr超能文献

集成金纳米孔阵列的电压调制表面等离子体共振生物传感器

Voltage-modulated surface plasmon resonance biosensors integrated with gold nanohole arrays.

作者信息

Ma Syu-Cing, Gupta Rohit, Ondevilla Neil Adrian P, Barman Kuntal, Lee Liang-Yun, Chang Hsien-Chang, Huang Jian-Jang

机构信息

Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan.

Contributed equally.

出版信息

Biomed Opt Express. 2022 Dec 15;14(1):182-193. doi: 10.1364/BOE.478164. eCollection 2023 Jan 1.

Abstract

Surface plasmon resonance (SPR) has emerged as one of the most efficient and attractive techniques for optical sensors in biological applications. The traditional approach of an EC (electrochemical)-SPR biosensor to generate SPR is by adopting a prism underneath the sensing substrate, and an angular scan is performed to characterize the reflectivity of target analytes. In this paper, we designed and investigated a novel optical biosensor based on a hybrid plasmonic and electrochemical phenomenon. The SPR was generated from a thin layer of gold nanohole array on a glass substrate. Using C-Reactive Protein (CRP) as the target analyte, we tested our device for different concentrations and observed the optical response under various voltage bias conditions. We observed that SPR response is concentration-dependent and can be modulated by varying DC voltages or AC bias frequencies. For CRP concentrations ranging from 1 to 1000 µg/mL, at the applied voltage of -600 mV, we obtained a limit of detection for this device of 16.5 ng/mL at the resonance peak wavelength of 690 nm. The phenomenon is due to spatial re-distribution of electron concentration at the metal-solution interface. The results suggest that CRP concentration can be determined from the SPR peak wavelength shift by scanning the voltages. The proposed new sensor structure is permissible for various future optoelectronic integration for plasmonic and electrochemical sensing.

摘要

表面等离子体共振(SPR)已成为生物应用中光学传感器最有效且最具吸引力的技术之一。电化学(EC)-SPR生物传感器产生SPR的传统方法是在传感基板下方采用棱镜,并进行角度扫描以表征目标分析物的反射率。在本文中,我们设计并研究了一种基于混合等离子体和电化学现象的新型光学生物传感器。SPR由玻璃基板上的金纳米孔阵列薄层产生。以C反应蛋白(CRP)作为目标分析物,我们针对不同浓度测试了我们的设备,并在各种电压偏置条件下观察了光学响应。我们观察到SPR响应与浓度有关,并且可以通过改变直流电压或交流偏置频率进行调制。对于浓度范围为1至1000μg/mL的CRP,在施加电压为 - 600 mV时,我们在690 nm的共振峰波长处获得了该设备16.5 ng/mL的检测限。这种现象是由于金属 - 溶液界面处电子浓度的空间重新分布所致。结果表明,可以通过扫描电压从SPR峰波长偏移确定CRP浓度。所提出的新型传感器结构适用于未来各种用于等离子体和电化学传感的光电集成。

相似文献

1
Voltage-modulated surface plasmon resonance biosensors integrated with gold nanohole arrays.
Biomed Opt Express. 2022 Dec 15;14(1):182-193. doi: 10.1364/BOE.478164. eCollection 2023 Jan 1.
2
Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples.
Beilstein J Nanotechnol. 2016 Nov 1;7:1564-1573. doi: 10.3762/bjnano.7.150. eCollection 2016.
4
Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
ACS Sens. 2019 Dec 27;4(12):3265-3274. doi: 10.1021/acssensors.9b01780. Epub 2019 Dec 9.
5
Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.
Anal Chem. 2014 Apr 1;86(7):3355-64. doi: 10.1021/ac4035218. Epub 2014 Mar 13.
6
Nanohole array integrated metal insulator metal (MIM) based structure employing dual mode SPR sensor for detection of Hemoglobin (Hb) in blood.
Heliyon. 2024 Jun 22;10(12):e33445. doi: 10.1016/j.heliyon.2024.e33445. eCollection 2024 Jun 30.
7
Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors: A Win-Win Situation.
ACS Appl Mater Interfaces. 2021 Aug 4;13(30):36436-36444. doi: 10.1021/acsami.1c07034. Epub 2021 Jul 23.
8
Integrated-optic biosensor by electro-optically modulated surface plasmon resonance.
Biosens Bioelectron. 2007 Feb 15;22(7):1441-6. doi: 10.1016/j.bios.2006.06.014. Epub 2006 Jul 31.
9

引用本文的文献

1
Introduction to the feature issue: Advances in Optical Biosensors for Biomedical Applications.
Biomed Opt Express. 2024 Apr 19;15(5):3183-3190. doi: 10.1364/BOE.527613. eCollection 2024 May 1.

本文引用的文献

1
Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor.
Nanoscale. 2018 Nov 1;10(42):19927-19936. doi: 10.1039/c8nr07051b.
2
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
Chem Rev. 2018 Jun 27;118(12):5912-5951. doi: 10.1021/acs.chemrev.8b00243. Epub 2018 Jun 4.
3
Label-Free Electrochemical Immunoassay for C-Reactive Protein.
Biosensors (Basel). 2018 Mar 30;8(2):34. doi: 10.3390/bios8020034.
4
Sensitive detection of voltage transients using differential intensity surface plasmon resonance system.
Opt Express. 2017 Dec 11;25(25):31552-31567. doi: 10.1364/OE.25.031552.
5
Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: Application in milk and honey.
Biosens Bioelectron. 2017 Apr 15;90:516-524. doi: 10.1016/j.bios.2016.10.041. Epub 2016 Oct 19.
6
Charge transfer kinetics from surface plasmon resonance voltammetry.
Anal Chem. 2014 Apr 15;86(8):3882-6. doi: 10.1021/ac404101w. Epub 2014 Apr 1.
7
EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
Analyst. 2012 Sep 21;137(18):4162-70. doi: 10.1039/c2an35566c. Epub 2012 Jul 25.
8
Optofluidic devices and applications in photonics, sensing and imaging.
Lab Chip. 2012 Oct 7;12(19):3543-51. doi: 10.1039/c2lc40467b.
9
Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding.
Anal Chem. 2012 Jan 3;84(1):327-33. doi: 10.1021/ac202634h. Epub 2011 Dec 14.
10
Morphology-dependent voltage sensitivity of a gold nanostructure.
Langmuir. 2011 Nov 15;27(22):13950-61. doi: 10.1021/la202983d. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验