Ma Syu-Cing, Gupta Rohit, Ondevilla Neil Adrian P, Barman Kuntal, Lee Liang-Yun, Chang Hsien-Chang, Huang Jian-Jang
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan.
Contributed equally.
Biomed Opt Express. 2022 Dec 15;14(1):182-193. doi: 10.1364/BOE.478164. eCollection 2023 Jan 1.
Surface plasmon resonance (SPR) has emerged as one of the most efficient and attractive techniques for optical sensors in biological applications. The traditional approach of an EC (electrochemical)-SPR biosensor to generate SPR is by adopting a prism underneath the sensing substrate, and an angular scan is performed to characterize the reflectivity of target analytes. In this paper, we designed and investigated a novel optical biosensor based on a hybrid plasmonic and electrochemical phenomenon. The SPR was generated from a thin layer of gold nanohole array on a glass substrate. Using C-Reactive Protein (CRP) as the target analyte, we tested our device for different concentrations and observed the optical response under various voltage bias conditions. We observed that SPR response is concentration-dependent and can be modulated by varying DC voltages or AC bias frequencies. For CRP concentrations ranging from 1 to 1000 µg/mL, at the applied voltage of -600 mV, we obtained a limit of detection for this device of 16.5 ng/mL at the resonance peak wavelength of 690 nm. The phenomenon is due to spatial re-distribution of electron concentration at the metal-solution interface. The results suggest that CRP concentration can be determined from the SPR peak wavelength shift by scanning the voltages. The proposed new sensor structure is permissible for various future optoelectronic integration for plasmonic and electrochemical sensing.
表面等离子体共振(SPR)已成为生物应用中光学传感器最有效且最具吸引力的技术之一。电化学(EC)-SPR生物传感器产生SPR的传统方法是在传感基板下方采用棱镜,并进行角度扫描以表征目标分析物的反射率。在本文中,我们设计并研究了一种基于混合等离子体和电化学现象的新型光学生物传感器。SPR由玻璃基板上的金纳米孔阵列薄层产生。以C反应蛋白(CRP)作为目标分析物,我们针对不同浓度测试了我们的设备,并在各种电压偏置条件下观察了光学响应。我们观察到SPR响应与浓度有关,并且可以通过改变直流电压或交流偏置频率进行调制。对于浓度范围为1至1000μg/mL的CRP,在施加电压为 - 600 mV时,我们在690 nm的共振峰波长处获得了该设备16.5 ng/mL的检测限。这种现象是由于金属 - 溶液界面处电子浓度的空间重新分布所致。结果表明,可以通过扫描电压从SPR峰波长偏移确定CRP浓度。所提出的新型传感器结构适用于未来各种用于等离子体和电化学传感的光电集成。