Suppr超能文献

HiC-GNN:一种使用图卷积神经网络进行三维染色体重建的通用模型。

HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks.

作者信息

Hovenga Van, Kalita Jugal, Oluwadare Oluwatosin

机构信息

Department of Mathematics, University of Colorado, Colorado Springs, CO, United States.

Department of Computer Science, University of Colorado, Colorado Springs, CO, United States.

出版信息

Comput Struct Biotechnol J. 2022 Dec 31;21:812-836. doi: 10.1016/j.csbj.2022.12.051. eCollection 2023.

Abstract

Chromosome conformation capture (3 C) is a method of measuring chromosome topology in terms of loci interaction. The Hi-C method is a derivative of 3 C that allows for genome-wide quantification of chromosome interaction. From such interaction data, it is possible to infer the three-dimensional (3D) structure of the underlying chromosome. In this paper, we developed a novel method, HiC-GNN, for predicting the 3D structures of chromosomes from Hi-C data. HiC-GNN is unique from other methods for chromosome structure prediction in that the models learned by HiC-GNN can be generalized to data that is distinct from the training data. This aspect of HiC-GNN allows models that were trained on one Hi-C contact map to be used for inference on entirely different maps. To the authors' knowledge, this generalizing capability is not present in any existing methods. HiC-GNN uses a node embedding algorithm and a graph neural network to predict the 3D coordinates of each genomic loci from the corresponding Hi-C contact data. Unlike other methods, our algorithm allows for the storage of pre-trained parameters, thus enabling prediction on data that is entirely different from the training data. We show that our method can accurately generalize a single model across Hi-C resolutions, multiple restriction enzymes, and multiple cell populations while maintaining reconstruction accuracy across three Hi-C datasets. Our algorithm outperforms the state-of-the-art methods in accuracy of prediction and runtime and introduces a novel method for 3D structure prediction from Hi-C data. All our source codes and data are available at https://github.com/OluwadareLab/HiC-GNN.

摘要

染色体构象捕获(3C)是一种根据基因座相互作用来测量染色体拓扑结构的方法。Hi-C方法是3C的衍生方法,可对全基因组范围内的染色体相互作用进行量化。从这些相互作用数据中,可以推断出潜在染色体的三维(3D)结构。在本文中,我们开发了一种名为HiC-GNN的新方法,用于从Hi-C数据预测染色体的3D结构。HiC-GNN与其他染色体结构预测方法的不同之处在于,HiC-GNN学习的模型可以推广到与训练数据不同的数据。HiC-GNN的这一特性使得在一个Hi-C接触图上训练的模型可用于对完全不同的图进行推理。据作者所知,任何现有方法都没有这种泛化能力。HiC-GNN使用节点嵌入算法和图神经网络,根据相应的Hi-C接触数据预测每个基因组基因座的3D坐标。与其他方法不同,我们的算法允许存储预训练参数,从而能够对与训练数据完全不同的数据进行预测。我们表明,我们的方法可以在跨Hi-C分辨率、多种限制酶和多种细胞群体的情况下准确地泛化单个模型,同时在三个Hi-C数据集中保持重建精度。我们的算法在预测准确性和运行时间方面优于现有最先进的方法,并引入了一种从Hi-C数据进行3D结构预测的新方法。我们所有的源代码和数据可在https://github.com/OluwadareLab/HiC-GNN上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bb2/9842867/3d17eb4ad58d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验