Suppr超能文献

全基因组推算差异表达富集分析可识别与性状相关的组织。

Genome-wide imputed differential expression enrichment analysis identifies trait-relevant tissues.

作者信息

Ghaffar Ammarah, Nyholt Dale R

机构信息

Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.

出版信息

Front Genet. 2023 Jan 6;13:1008511. doi: 10.3389/fgene.2022.1008511. eCollection 2022.

Abstract

The identification of pathogenically-relevant genes and tissues for complex traits can be a difficult task. We developed an approach named genome-wide imputed differential expression enrichment (GIDEE), to prioritise trait-relevant tissues by combining genome-wide association study (GWAS) summary statistic data with tissue-specific expression quantitative trait loci (eQTL) data from 49 GTEx tissues. Our GIDEE approach analyses robustly imputed gene expression and tests for enrichment of differentially expressed genes in each tissue. Two tests (mean squared z-score and empirical Brown's method) utilise the full distribution of differential expression -values across all genes, while two binomial tests assess the proportion of genes with tissue-wide significant differential expression. GIDEE was applied to nine training datasets with known trait-relevant tissues and ranked 49 GTEx tissues using the individual and combined enrichment tests. The best-performing enrichment test produced an average rank of 1.55 out of 49 for the known trait-relevant tissue across the nine training datasets-ranking the correct tissue first five times, second three times, and third once. Subsequent application of the GIDEE approach to 20 test datasets-whose pathogenic tissues or cell types are uncertain or unknown-provided important prioritisation of tissues relevant to the trait's regulatory architecture. GIDEE prioritisation may thus help identify both pathogenic tissues and suitable proxy tissue/cell models (e.g., using enriched tissues/cells that are more easily accessible). The application of our GIDEE approach to GWAS datasets will facilitate follow-up and research to determine the functional consequence(s) of their risk loci.

摘要

识别复杂性状的致病相关基因和组织可能是一项艰巨的任务。我们开发了一种名为全基因组推断差异表达富集(GIDEE)的方法,通过将全基因组关联研究(GWAS)汇总统计数据与来自49个GTEx组织的组织特异性表达数量性状位点(eQTL)数据相结合,对性状相关组织进行优先级排序。我们的GIDEE方法对可靠推断的基因表达进行分析,并测试每个组织中差异表达基因的富集情况。两种测试方法(均方z分数和经验布朗方法)利用所有基因差异表达值的完整分布,而两种二项式测试则评估具有全组织显著差异表达的基因比例。GIDEE应用于九个已知性状相关组织的训练数据集,并使用单独和联合富集测试对49个GTEx组织进行排名。在九个训练数据集中,表现最佳的富集测试对已知性状相关组织的平均排名为49个中的1.55——正确组织排名第一的有五次,排名第二的有三次,排名第三的有一次。随后,将GIDEE方法应用于20个测试数据集——其致病组织或细胞类型不确定或未知——为与性状调控结构相关的组织提供了重要的优先级排序。因此,GIDEE优先级排序可能有助于识别致病组织和合适的替代组织/细胞模型(例如,使用更容易获取的富集组织/细胞)。将我们的GIDEE方法应用于GWAS数据集将有助于后续研究,以确定其风险位点的功能后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43b7/9870027/ac3e60b96464/fgene-13-1008511-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验