Suppr超能文献

一种利用单分子成像量化蛋白质化学计量比的期望最大化方法。

An expectation-maximization approach to quantifying protein stoichiometry with single-molecule imaging.

作者信息

Boonkird Artittaya, Nino Daniel F, Milstein Joshua N

机构信息

Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.

Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada.

出版信息

Bioinform Adv. 2021 Nov 13;1(1):vbab032. doi: 10.1093/bioadv/vbab032. eCollection 2021.

Abstract

MOTIVATION

Single-molecule localization microscopy (SMLM) is a super-resolution technique capable of rendering nanometer scale images of cellular structures. Recently, much effort has gone into developing algorithms for extracting quantitative features from SMLM datasets, such as the abundance and stoichiometry of macromolecular complexes. These algorithms often require knowledge of the complicated photophysical properties of photoswitchable fluorophores.

RESULTS

Here, we develop a calibration-free approach to quantitative SMLM built upon the observation that most photoswitchable fluorophores emit a geometrically distributed number of blinks before photobleaching. From a statistical model of a mixture of monomers, dimers and trimers, the method employs an adapted expectation-maximization algorithm to learn the protomer fractions while simultaneously determining the single-fluorophore blinking distribution. To illustrate the utility of our approach, we benchmark it on both simulated datasets and experimental datasets assembled from SMLM images of fluorescently labeled DNA nanostructures.

AVAILABILITY AND IMPLEMENTATION

An implementation of our algorithm written in Python is available at: https://www.utm.utoronto.ca/milsteinlab/resources/Software/MMCode/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

动机

单分子定位显微镜(SMLM)是一种超分辨率技术,能够呈现细胞结构的纳米级图像。最近,人们在开发从SMLM数据集中提取定量特征的算法方面投入了大量精力,例如大分子复合物的丰度和化学计量。这些算法通常需要了解可光开关荧光团复杂的光物理性质。

结果

在此,我们基于大多数可光开关荧光团在光漂白前发出几何分布数量的闪烁这一观察结果,开发了一种用于定量SMLM的免校准方法。该方法从单体、二聚体和三聚体混合物的统计模型出发,采用一种改进的期望最大化算法来学习原聚体分数,同时确定单荧光团闪烁分布。为了说明我们方法的实用性,我们在模拟数据集和从荧光标记DNA纳米结构的SMLM图像组装的实验数据集上对其进行了基准测试。

可用性和实现方式

用Python编写的我们算法的实现可在以下网址获取:https://www.utm.utoronto.ca/milsteinlab/resources/Software/MMCode/。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a30/9710618/183557bac5ff/vbab032f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验