Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
Sci Rep. 2022 Mar 18;12(1):4676. doi: 10.1038/s41598-022-08746-4.
Visualizing the subcellular distribution of proteins and determining whether specific proteins co-localize is one of the main strategies in determining the organization and potential interactions of protein complexes in biological samples. The development of super-resolution microscopy techniques such as single-molecule localization microscopy (SMLM) has tremendously increased the ability to resolve protein distribution at nanometer resolution. As super-resolution imaging techniques are becoming instrumental in revealing novel biological insights, new quantitative approaches that exploit the unique nature of SMLM datasets are required. Here, we present a new, local density-based algorithm to quantify co-localization in dual-color SMLM datasets. We show that this method is broadly applicable and only requires molecular coordinates and their localization precision as inputs. Using simulated point patterns, we show that this method robustly measures the co-localization in dual-color SMLM datasets, independent of localization density, but with high sensitivity towards local enrichments. We further validated our method using SMLM imaging of the microtubule network in epithelial cells and used it to study the spatial association between proteins at neuronal synapses. Together, we present a simple and easy-to-use, but powerful method to analyze the spatial association of molecules in dual-color SMLM datasets.
可视化蛋白质的亚细胞分布并确定特定蛋白质是否共定位是确定生物样品中蛋白质复合物的组织和潜在相互作用的主要策略之一。单分子定位显微镜(SMLM)等超分辨率显微镜技术的发展极大地提高了以纳米分辨率解析蛋白质分布的能力。由于超分辨率成像技术在揭示新的生物学见解方面变得至关重要,因此需要利用 SMLM 数据集独特性质的新定量方法。在这里,我们提出了一种新的基于局部密度的算法,用于量化双色 SMLM 数据集的共定位。我们表明,该方法具有广泛的适用性,仅需要分子坐标及其定位精度作为输入。使用模拟点图案,我们表明该方法能够稳健地测量双色 SMLM 数据集的共定位,而与定位密度无关,但对局部富集具有高灵敏度。我们进一步使用上皮细胞中微管网络的 SMLM 成像验证了我们的方法,并使用它来研究神经元突触处蛋白质之间的空间关联。总之,我们提出了一种简单易用但功能强大的方法,用于分析双色 SMLM 数据集中分子的空间关联。