文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

前列腺癌中的免疫微环境浸润景观和免疫相关亚型。

Immune microenvironment infiltration landscape and immune-related subtypes in prostate cancer.

机构信息

Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

出版信息

Front Immunol. 2023 Jan 9;13:1001297. doi: 10.3389/fimmu.2022.1001297. eCollection 2022.


DOI:10.3389/fimmu.2022.1001297
PMID:36700224
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9868452/
Abstract

BACKGROUND: The tumor microenvironment (TME) primarily comprises cancer cells, cancer-infiltrating immune cells, and stromal cells. The tumor cells alter the TME by secreting signaling molecules to induce immune tolerance. The immune cell infiltrating the TME influences the prognosis of patients with cancers. However, immune cell infiltration (ICI) in the TME of patients with prostate cancer (PC) has not yet been studied. METHODS: In this study, we used Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) algorithms to identify three ICI clusters based on 1,099 genes associated with ICI in the TME. The patients were classified into three distinct ICI gene clusters based on overlapping differentially expressed genes in ICI clusters. Furthermore, the ICI scores were calculated using principal component analysis. RESULTS: The results revealed that patients with high ICI scores had poor prognoses and reduced expression of immune-checkpoint genes and immune-related genes. Furthermore, the transforming growth factor-beta (TGF-β) and WNT-β signaling pathways were enriched in the high ICI score subgroup, which suggests that suppression of T cells could contribute to poor prognosis of patients with PC. A positive correlation was observed between the high-ICI-score subgroup and the high tumor mutation burden (TMB) value. Patients with low ICI scores could benefit from immunotherapy, indicating that the ICI score could be used to predict the efficacy of immunotherapeutic response. CONCLUSIONS: In summary, we provide a comprehensive overview of the landscape of ICI in PC, which could aid in designing the strategies for immunotherapy for patients with PC.

摘要

背景:肿瘤微环境(TME)主要由癌细胞、浸润肿瘤的免疫细胞和基质细胞组成。癌细胞通过分泌信号分子诱导免疫耐受来改变 TME。浸润 TME 的免疫细胞影响癌症患者的预后。然而,前列腺癌(PC)患者 TME 中的免疫细胞浸润尚未得到研究。

方法:在这项研究中,我们使用 Cell-type identification by Estimating Relative Subsets of RNA Transcripts(CIBERSORT)和 Estimation of Stromal and Immune cells in Malignant Tumors using Expression data(ESTIMATE)算法,基于与 TME 中免疫浸润相关的 1099 个基因,鉴定出三个免疫浸润聚类。根据免疫浸润聚类中重叠的差异表达基因,将患者分为三个不同的免疫浸润基因聚类。此外,使用主成分分析计算免疫浸润评分。

结果:结果表明,高免疫浸润评分的患者预后较差,免疫检查点基因和免疫相关基因表达下调。此外,转化生长因子-β(TGF-β)和 WNT-β 信号通路在高免疫浸润评分亚组中富集,这表明抑制 T 细胞可能导致 PC 患者预后不良。高免疫浸润评分亚组与高肿瘤突变负荷(TMB)值呈正相关。低免疫浸润评分的患者可能受益于免疫治疗,这表明免疫浸润评分可用于预测免疫治疗反应的疗效。

结论:总之,我们全面概述了 PC 中的免疫浸润情况,这有助于为 PC 患者的免疫治疗策略设计提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/1f8282c0aaa8/fimmu-13-1001297-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/7970807c6d13/fimmu-13-1001297-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/7c31ee214369/fimmu-13-1001297-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/724a4fe800de/fimmu-13-1001297-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/b1120a18fdd8/fimmu-13-1001297-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/a6c2eee584df/fimmu-13-1001297-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/13074595c4f8/fimmu-13-1001297-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/a004ead6f751/fimmu-13-1001297-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/1f8282c0aaa8/fimmu-13-1001297-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/7970807c6d13/fimmu-13-1001297-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/7c31ee214369/fimmu-13-1001297-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/724a4fe800de/fimmu-13-1001297-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/b1120a18fdd8/fimmu-13-1001297-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/a6c2eee584df/fimmu-13-1001297-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/13074595c4f8/fimmu-13-1001297-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/a004ead6f751/fimmu-13-1001297-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5716/9868452/1f8282c0aaa8/fimmu-13-1001297-g008.jpg

相似文献

[1]
Immune microenvironment infiltration landscape and immune-related subtypes in prostate cancer.

Front Immunol. 2022

[2]
Identification of the immune cell infiltration landscape in pancreatic cancer to assist immunotherapy.

Future Oncol. 2021-11

[3]
Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Bladder Cancer.

Front Cell Dev Biol. 2021-8-31

[4]
Tumor Immune Microenvironment Characterization Identifies Prognosis and Immunotherapy-Related Gene Signatures in Melanoma.

Front Immunol. 2021

[5]
Characterization of the Immune Cell Infiltration Landscape in Head and Neck Squamous Cell Carcinoma to Aid Immunotherapy.

Mol Ther Nucleic Acids. 2020-8-29

[6]
Landscape of Immune Microenvironment Under Immune Cell Infiltration Pattern in Breast Cancer.

Front Immunol. 2021

[7]
Characterization of the Immune Cell Infiltration Landscape and a New Prognostic Score in Glioblastoma.

J Healthc Eng. 2022

[8]
Characterization of the Immune Cell Infiltration Profile in Pancreatic Carcinoma to Aid in Immunotherapy.

Front Oncol. 2021-5-13

[9]
Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Kidney Renal Clear Cell Carcinoma.

Front Genet. 2022-6-29

[10]
The Heterogeneity of Immune Cell Infiltration Landscape and Its Immunotherapeutic Implications in Hepatocellular Carcinoma.

Front Immunol. 2022

引用本文的文献

[1]
Potential role of DKK3 and WIF1 in prostate cancer: bioinformatics and clinical analysis.

Discov Oncol. 2025-8-27

[2]
Prognostic significance and immune infiltration analysis of HMGA2 in endometrial cancer.

Front Immunol. 2025-7-9

[3]
Bioinformatics analysis identifies NT5M modulates immune evasion through PD-L1 via CXCL8 in pancreatic adenocarcinoma.

Sci Rep. 2025-7-19

[4]
EPHB1 Protein Promoted the Progression of Prostate Adenocarcinoma Through Phosphorylating GSK3B and Activating EPHB1-GSK3B-SMAD3 Pathway.

Hum Mutat. 2025-6-12

[5]
Bolstering CD8 T Cells' Antitumor Immunity: A Promising Strategy to Improve the Response to Advanced Prostate Cancer Treatment.

Biology (Basel). 2025-5-14

[6]
Prediction of acute myeloid leukemia prognosis based on autophagy features and characterization of its immune microenvironment.

Front Immunol. 2024-11-22

[7]
The Mechanism by Which Hedgehog Interacting Protein (HHIP) in Cancer-Associated Fibroblasts Regulate the Secretion of Inflammatory Factors Through the JAK1/STAT3 Pathway Affecting Prostate Cancer Stemness.

J Inflamm Res. 2024-11-11

[8]
NEK2 is a potential pan-cancer biomarker and immunotherapy target.

Discov Oncol. 2024-11-7

[9]
Application and new findings of scRNA-seq and ST-seq in prostate cancer.

Cell Regen. 2024-10-29

[10]
Iron-loaded cancer-associated fibroblasts induce immunosuppression in prostate cancer.

Nat Commun. 2024-10-20

本文引用的文献

[1]
Androgen receptor activity in T cells limits checkpoint blockade efficacy.

Nature. 2022-6

[2]
SERPINH1 is a Potential Prognostic Biomarker and Correlated With Immune Infiltration: A Pan-Cancer Analysis.

Front Genet. 2022-1-4

[3]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[4]
Exploration of the Tumor Mutational Burden as a Prognostic Biomarker and Related Hub Gene Identification in Prostate Cancer.

Technol Cancer Res Treat. 2021

[5]
Prostate cancer.

Lancet. 2021-9-18

[6]
ATR Inhibition Induces CDK1-SPOP Signaling and Enhances Anti-PD-L1 Cytotoxicity in Prostate Cancer.

Clin Cancer Res. 2021-9-1

[7]
Characterization of the Immune Cell Infiltration Landscape in Head and Neck Squamous Cell Carcinoma to Aid Immunotherapy.

Mol Ther Nucleic Acids. 2020-8-29

[8]
The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma.

Am J Surg Pathol. 2020-8

[9]
Efficacy of PSMA ligand PET-based radiotherapy for recurrent prostate cancer after radical prostatectomy and salvage radiotherapy.

BMC Cancer. 2020-4-29

[10]
A genomic and epigenomic atlas of prostate cancer in Asian populations.

Nature. 2020-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索