Department of Nuclear Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Department of Neurology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
J Healthc Eng. 2022 Mar 9;2022:4326728. doi: 10.1155/2022/4326728. eCollection 2022.
Glioblastoma (GBM) is the most aggressive, malignant primary brain tumor, which has abundant tumor-infiltrating immune cells and stroma in the tumor microenvironment (TME). So far, the TME landscape of GBM has not been elucidated. GBM samples were retrieved from TCGA and GEO databases. We used ESTIMATE and CIBERSORT algorithms to calculate risk score associated with TME, and immune cell infiltration (ICI) score of each patient is calculated by PCA. GSEA analysis is explored for each subgroup. Finally, the patient prognosis in different ICI score subgroup is determined. Two ICI clusters are determined in 208 GBM patients, and 207 differentially expressed genes (DGEs) are found between ICI clusters. And then, two gene clusters were determined. Finally, we obtained ICI score for each patient using principal component analysis (PCA). Patients were divided into high and low ICI score subgroups by setting the median as cutoff. Through GSEA, we found ECM-receptor interaction, mTOR signaling pathway, pathways in cancer, TGF-beta signaling pathway, and other immunosuppressive pathway related genes in the low ICI score group. Furthermore, patients with high ICI score group have more better prognosis. Targeting the stroma in GBM may be an effective new therapeutic approach, and the ICI score is an effective potential prognostic classifier of GBM.
胶质母细胞瘤(GBM)是最具侵袭性和恶性的原发性脑肿瘤,其肿瘤微环境(TME)中存在丰富的肿瘤浸润免疫细胞和基质。到目前为止,GBM 的 TME 景观尚未阐明。从 TCGA 和 GEO 数据库中检索到 GBM 样本。我们使用 ESTIMATE 和 CIBERSORT 算法计算与 TME 相关的风险评分,并通过 PCA 计算每位患者的免疫细胞浸润(ICI)评分。对每个亚组进行 GSEA 分析。最后,确定不同 ICI 评分亚组中患者的预后。在 208 名 GBM 患者中确定了两个 ICI 聚类,并且在 ICI 聚类之间发现了 207 个差异表达基因(DGE)。然后,确定了两个基因聚类。最后,我们使用主成分分析(PCA)为每位患者获得 ICI 评分。通过将中位数作为截止值,将患者分为高和低 ICI 评分亚组。通过 GSEA,我们在低 ICI 评分组中发现了 ECM-受体相互作用、mTOR 信号通路、癌症途径、TGF-β信号通路和其他免疫抑制途径相关基因。此外,高 ICI 评分组的患者具有更好的预后。针对 GBM 中的基质可能是一种有效的新治疗方法,ICI 评分是 GBM 的有效潜在预后分类器。