Suppr超能文献

免疫原性自身肽——自身免疫中的未解之谜:鉴定驱动自身免疫性疾病中自身免疫反应的 T 细胞表位。

Immunogenic self-peptides - the great unknowns in autoimmunity: Identifying T-cell epitopes driving the autoimmune response in autoimmune diseases.

机构信息

Department of Dermatology, University Clinics, Ludwig-Maximilian-University of Munich, Munich, Germany.

出版信息

Front Immunol. 2023 Jan 9;13:1097871. doi: 10.3389/fimmu.2022.1097871. eCollection 2022.

Abstract

HLA-associated autoimmune diseases likely arise from T-cell-mediated autoimmune responses against certain self-peptides from the broad HLA-presented immunopeptidomes. The limited knowledge of the autoimmune target peptides has so far compromised the basic understanding of autoimmune pathogenesis. This is due to the complexity of antigen processing and presentation as well as the polyspecificity of T-cell receptors (TCRs), which pose high methodological challenges on the discovery of immunogenic self-peptides. HLA-class I molecules present peptides to CD8 T cells primarily derived from cytoplasmic proteins. Therefore, HLA-class I-restricted autoimmune responses should be directed against target cells expressing the corresponding parental protein. In HLA-class II-associated diseases, the origin of immunogenic peptides is not pre-specified, because peptides presented by HLA-class II molecules to CD4 T cells may originate from both extracellular and cellular self-proteins. The different origins of HLA-class I and class II presented peptides determine the respective strategy for the discovery of immunogenic self-peptides in approaches based on the TCRs isolated from clonally expanded pathogenic T cells. Both involve identifying the respective restricting HLA allele as well as determining the recognition motif of the TCR under investigation by peptide library screening, which is required to search for homologous immunogenic self-peptides. In HLA-class I-associated autoimmune diseases, identification of the target cells allows for defining the restricting HLA allotype from the 6 different HLA-class I alleles of the individual HLA haplotype. It furthermore limits the search for immunogenic self-peptides to the transcriptome or immunopeptidome of the target cells, although neoepitopes generated by peptide splicing or translational errors may complicate identification. In HLA class II-associated autoimmune diseases, the lack of a defined target cell and differential antigen processing in different antigen-presenting cells complicate identification of the HLA restriction of autoreactive TCRs from CD4 T cells. To avoid that all corresponding HLA-class II allotypes have to be included in the peptide discovery, autoantigens defined by autoantibodies can guide the search for immunogenic self-peptides presented by the respective HLA-class II risk allele. The objective of this article is to highlight important aspects to be considered in the discovery of immunogenic self-peptides in autoimmune diseases.

摘要

HLA 相关自身免疫性疾病可能源于 T 细胞介导的针对某些来自广泛 HLA 呈递免疫肽库的自身肽的自身免疫反应。对自身免疫靶肽的有限了解迄今为止妨碍了对自身免疫发病机制的基本理解。这是由于抗原加工和呈递的复杂性以及 T 细胞受体 (TCR) 的多特异性,这对免疫原性自身肽的发现提出了很高的方法学挑战。HLA 类 I 分子主要将来自细胞质蛋白的肽呈递给 CD8 T 细胞。因此,HLA 类 I 限制的自身免疫反应应该针对表达相应亲本蛋白的靶细胞。在 HLA 类 II 相关疾病中,免疫原性肽的起源不是预先指定的,因为 HLA 类 II 分子呈递的 CD4 T 细胞的肽可能来自细胞外和细胞内自身蛋白。HLA 类 I 和 II 呈递肽的不同起源决定了基于从克隆扩增的致病性 T 细胞中分离的 TCR 发现免疫原性自身肽的各自策略。两者都涉及鉴定各自的限制性 HLA 等位基因,以及通过肽文库筛选确定正在研究的 TCR 的识别基序,这是搜索同源免疫原性自身肽所必需的。在 HLA 类 I 相关自身免疫性疾病中,靶细胞的鉴定允许从个体 HLA 单倍型的 6 个不同 HLA 类 I 等位基因中鉴定限制 HLA 同种型。它还将免疫原性自身肽的搜索限制在靶细胞的转录组或免疫肽库中,尽管由肽拼接或翻译错误产生的新表位可能会使鉴定复杂化。在 HLA 类 II 相关自身免疫性疾病中,缺乏明确的靶细胞和不同抗原呈递细胞中的差异抗原加工使从 CD4 T 细胞中鉴定自身反应性 TCR 的 HLA 限制复杂化。为避免必须包括所有相应的 HLA 类 II 同种型,自身抗体定义的自身抗原可以指导各自 HLA 类 II 风险等位基因呈递的免疫原性自身肽的搜索。本文的目的是强调在自身免疫性疾病中发现免疫原性自身肽时需要考虑的重要方面。

相似文献

3
Proteasome-Generated -Spliced Peptides and Their Potential Role in CD8 T Cell Tolerance.
Front Immunol. 2021 Feb 24;12:614276. doi: 10.3389/fimmu.2021.614276. eCollection 2021.
4
Multiple environmental antigens may trigger autoimmunity in psoriasis through T-cell receptor polyspecificity.
Front Immunol. 2024 Mar 8;15:1374581. doi: 10.3389/fimmu.2024.1374581. eCollection 2024.
5
T Cell Cross-Reactivity between a Highly Immunogenic EBV Epitope and a Self-Peptide Naturally Presented by HLA-B*18:01+ Cells.
J Immunol. 2015 May 15;194(10):4668-75. doi: 10.4049/jimmunol.1500233. Epub 2015 Apr 8.
7
Dendritic Cells Guide Islet Autoimmunity through a Restricted and Uniquely Processed Peptidome Presented by High-Risk HLA-DR.
J Immunol. 2016 Apr 15;196(8):3253-63. doi: 10.4049/jimmunol.1501282. Epub 2016 Mar 4.
9
Isolation of T cell receptors targeting recurrent neoantigens in hematological malignancies.
J Immunother Cancer. 2018 Jul 13;6(1):70. doi: 10.1186/s40425-018-0386-y.
10
GPU-Accelerated Discovery of Pathogen-Derived Molecular Mimics of a T-Cell Insulin Epitope.
Front Immunol. 2020 Feb 28;11:296. doi: 10.3389/fimmu.2020.00296. eCollection 2020.

引用本文的文献

1
The effect of HLA genotype on disease onset and severity in CTLA-4 insufficiency.
Front Immunol. 2025 Jan 6;15:1447995. doi: 10.3389/fimmu.2024.1447995. eCollection 2024.
2
Biology of HLA class I associated inflammatory diseases.
Best Pract Res Clin Rheumatol. 2024 May;38(2):101977. doi: 10.1016/j.berh.2024.101977. Epub 2024 Jul 31.
3
Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF.
Nat Commun. 2024 May 10;15(1):3956. doi: 10.1038/s41467-024-48322-0.
4
Molecular dissection of an immunodominant epitope in K1.2-exclusive autoimmunity.
Front Immunol. 2024 Apr 11;15:1329013. doi: 10.3389/fimmu.2024.1329013. eCollection 2024.
5
copepodTCR: Identification of Antigen-Specific T Cell Receptors with combinatorial peptide pooling.
bioRxiv. 2024 Feb 8:2023.11.28.569052. doi: 10.1101/2023.11.28.569052.
6
Engineering Cell Lines for Specific Human Leukocyte Antigen Presentation.
Methods Mol Biol. 2023;2691:351-369. doi: 10.1007/978-1-0716-3331-1_25.

本文引用的文献

1
Antigen-specific immune reactions by expanded CD8 T cell clones from HLA-B*27-positive patients with spondyloarthritis.
J Autoimmun. 2022 Dec;133:102901. doi: 10.1016/j.jaut.2022.102901. Epub 2022 Sep 15.
2
An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2119736119. doi: 10.1073/pnas.2119736119. Epub 2022 Jul 8.
3
MHC Class I Immunopeptidome: Past, Present, and Future.
Mol Cell Proteomics. 2022 Jul;21(7):100230. doi: 10.1016/j.mcpro.2022.100230. Epub 2022 Apr 5.
5
Antigen Processing, Presentation, and Tolerance: Role in Autoimmune Skin Diseases.
J Invest Dermatol. 2022 Mar;142(3 Pt B):750-759. doi: 10.1016/j.jid.2021.05.009. Epub 2021 Jul 20.
6
High-throughput and single-cell T cell receptor sequencing technologies.
Nat Methods. 2021 Aug;18(8):881-892. doi: 10.1038/s41592-021-01201-8. Epub 2021 Jul 19.
7
Lesional activation of T 17 cells in Behçet disease and psoriasis supports HLA class I-mediated autoimmune responses.
Br J Dermatol. 2021 Dec;185(6):1209-1220. doi: 10.1111/bjd.20643. Epub 2021 Sep 20.
9
Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases.
Nat Biotechnol. 2021 Feb;39(2):236-245. doi: 10.1038/s41587-020-0656-3. Epub 2020 Sep 7.
10
T cell antigen discovery.
Nat Methods. 2021 Aug;18(8):873-880. doi: 10.1038/s41592-020-0867-z. Epub 2020 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验