Suppr超能文献

使用细胞因子捕获抗原呈递细胞鉴定 HLA Ⅰ类和 HLA Ⅱ类限制性 T 细胞受体的抗原。

Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA.

出版信息

Sci Immunol. 2021 Jan 22;6(55). doi: 10.1126/sciimmunol.abf4001.

Abstract

A major limitation to understanding the associations of human leukocyte antigen (HLA) and CD8 and CD4 T cell receptor (TCR) genes with disease pathophysiology is the technological barrier of identifying which HLA molecules, epitopes, and TCRs form functional complexes. Here, we present a high-throughput epitope identification system that combines capture of T cell-secreted cytokines by barcoded antigen-presenting cells (APCs), cell sorting, and next-generation sequencing to identify class I- and class II-restricted epitopes starting from highly complex peptide-encoding oligonucleotide pools. We engineered APCs to express anti-cytokine antibodies, a library of DNA-encoded peptides, and multiple HLA class I or II molecules. We demonstrate that these engineered APCs link T cell activation-dependent cytokines with the DNA that encodes the presented peptide. We validated this technology by showing that we could select known targets of viral epitope-, neoepitope-, and autoimmune epitope-specific TCRs, starting from mixtures of peptide-encoding oligonucleotides. Then, starting from 10 TCRβ sequences that are found commonly in humans but lack known targets, we identified seven CD8 or CD4 TCR-targeted epitopes encoded by the human cytomegalovirus (CMV) genome. These included known epitopes, as well as a class I and a class II CMV epitope that have not been previously described. Thus, our cytokine capture-based assay makes use of a signal secreted by both CD8 and CD4 T cells and allows pooled screening of thousands of encoded peptides to enable epitope discovery for orphan TCRs. Our technology may enable identification of HLA-epitope-TCR complexes relevant to disease control, etiology, or treatment.

摘要

理解人类白细胞抗原 (HLA) 和 CD8 和 CD4 T 细胞受体 (TCR) 基因与疾病病理生理学关联的一个主要限制是识别形成功能复合物的 HLA 分子、表位和 TCR 的技术障碍。在这里,我们提出了一种高通量表位识别系统,该系统结合了通过带有条形码的抗原呈递细胞 (APC) 捕获 T 细胞分泌的细胞因子、细胞分选和下一代测序,从高度复杂的肽编码寡核苷酸池开始识别 I 类和 II 类限制性表位。我们设计了 APC 来表达抗细胞因子抗体、DNA 编码肽文库和多种 HLA 类 I 或 II 分子。我们证明这些工程化的 APC 将 T 细胞激活依赖性细胞因子与编码呈递肽的 DNA 联系起来。我们通过证明我们可以从肽编码寡核苷酸混合物中选择已知的病毒表位、新表位和自身免疫表位特异性 TCR 的靶标,验证了这项技术。然后,从在人类中普遍存在但缺乏已知靶标的 10 个 TCRβ 序列中,我们鉴定了七个由人类巨细胞病毒 (CMV) 基因组编码的 CD8 或 CD4 TCR 靶向表位。其中包括已知的表位,以及一个以前未描述的 I 类和 II 类 CMV 表位。因此,我们基于细胞因子捕获的测定法利用 CD8 和 CD4 T 细胞分泌的信号,并允许对数千个编码肽进行 pooled 筛选,从而为孤儿 TCR 发现表位。我们的技术可能能够识别与疾病控制、病因或治疗相关的 HLA-表位-TCR 复合物。

相似文献

2
Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition.
PLoS One. 2018 Nov 6;13(11):e0206654. doi: 10.1371/journal.pone.0206654. eCollection 2018.
5
Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes.
Cancer Immunol Res. 2014 Dec;2(12):1230-44. doi: 10.1158/2326-6066.CIR-14-0108. Epub 2014 Sep 22.
6
Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.
Immunology. 2011 Apr;132(4):482-91. doi: 10.1111/j.1365-2567.2010.03383.x. Epub 2011 Feb 7.
9
A Systematic, Unbiased Mapping of CD8 and CD4 T Cell Epitopes in Yellow Fever Vaccinees.
Front Immunol. 2020 Aug 31;11:1836. doi: 10.3389/fimmu.2020.01836. eCollection 2020.
10
Cross-presentation of HLA class I epitopes from exogenous NY-ESO-1 polypeptides by nonprofessional APCs.
J Immunol. 2003 Feb 1;170(3):1191-6. doi: 10.4049/jimmunol.170.3.1191.

引用本文的文献

1
identification of the specificities of recurrent human T cell receptors.
bioRxiv. 2025 Aug 4:2025.08.03.668342. doi: 10.1101/2025.08.03.668342.
3
A single point mutation on FLT3L-Fc protein increases the risk of immunogenicity.
Front Immunol. 2025 Feb 13;16:1519452. doi: 10.3389/fimmu.2025.1519452. eCollection 2025.
4
Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets.
NPJ Syst Biol Appl. 2025 Jan 17;11(1):10. doi: 10.1038/s41540-024-00482-x.
5
Circulating tumor-reactive KIRCD8 T cells suppress anti-tumor immunity in patients with melanoma.
Nat Immunol. 2025 Jan;26(1):82-91. doi: 10.1038/s41590-024-02023-4. Epub 2024 Nov 28.
6
Rapid parallel reconstruction and specificity screening of hundreds of T cell receptors.
Nat Protoc. 2025 Mar;20(3):539-586. doi: 10.1038/s41596-024-01061-4. Epub 2024 Nov 8.
8
Focusing on CD8 T-cell phenotypes: improving solid tumor therapy.
J Exp Clin Cancer Res. 2024 Sep 28;43(1):266. doi: 10.1186/s13046-024-03195-5.
9
A synthetic cytotoxic T cell platform for rapidly prototyping TCR function.
NPJ Precis Oncol. 2024 Aug 19;8(1):182. doi: 10.1038/s41698-024-00669-9.
10
High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits.
Nat Biotechnol. 2025 Apr;43(4):623-634. doi: 10.1038/s41587-024-02248-6. Epub 2024 Jul 2.

本文引用的文献

1
SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls.
Nature. 2020 Aug;584(7821):457-462. doi: 10.1038/s41586-020-2550-z. Epub 2020 Jul 15.
2
T cell antigen discovery.
Nat Methods. 2021 Aug;18(8):873-880. doi: 10.1038/s41592-020-0867-z. Epub 2020 Jul 6.
4
Massively parallel interrogation and mining of natively paired human TCRαβ repertoires.
Nat Biotechnol. 2020 May;38(5):609-619. doi: 10.1038/s41587-020-0438-y. Epub 2020 Mar 16.
5
Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data.
J Proteome Res. 2020 Jun 5;19(6):2304-2315. doi: 10.1021/acs.jproteome.9b00874. Epub 2020 Apr 30.
6
Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):532-540. doi: 10.1073/pnas.1915008117. Epub 2019 Dec 26.
7
MHC-II neoantigens shape tumour immunity and response to immunotherapy.
Nature. 2019 Oct;574(7780):696-701. doi: 10.1038/s41586-019-1671-8. Epub 2019 Oct 23.
8
T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes.
Cell. 2019 Aug 8;178(4):1016-1028.e13. doi: 10.1016/j.cell.2019.07.009.
9
Opposing T cell responses in experimental autoimmune encephalomyelitis.
Nature. 2019 Aug;572(7770):481-487. doi: 10.1038/s41586-019-1467-x. Epub 2019 Aug 7.
10
Deciphering CD4 T cell specificity using novel MHC-TCR chimeric receptors.
Nat Immunol. 2019 May;20(5):652-662. doi: 10.1038/s41590-019-0335-z. Epub 2019 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验