Wyatt Brian C, Thakur Anupma, Nykiel Kat, Hood Zachary D, Adhikari Shiba P, Pulley Krista K, Highland Wyatt J, Strachan Alejandro, Anasori Babak
Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.
School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.
Nano Lett. 2023 Feb 8;23(3):931-938. doi: 10.1021/acs.nanolett.2c04287. Epub 2023 Jan 26.
The need for novel materials for energy storage and generation calls for chemical control at the atomic scale in nanomaterials. Ordered double-transition-metal MXenes expanded the chemical diversity of the family of atomically layered 2D materials since their discovery in 2015. However, atomistic tunability of ordered MXenes to achieve ideal composition-property relationships has not been yet possible. In this study, we demonstrate the synthesis of MoNbAlC MAX phases (0 ≤ α ≤ 0.3) and confirm the preferential ordering behavior of Mo and Nb in the outer and inner M layers, respectively, using density functional theory, Rietveld refinement, and electron microscopy methods. We also synthesize their 2D derivative MoNbCT MXenes and exemplify the effect of preferential ordering on their hydrogen evolution reaction electrocatalytic behavior. This study seeks to inspire further exploration of the ordered double-transition-metal MXene family and contribute composition-behavior tools toward application-driven design of 2D materials.
对用于能量存储和产生的新型材料的需求,要求在纳米材料的原子尺度上进行化学控制。自2015年被发现以来,有序双过渡金属MXenes扩展了原子层状二维材料家族的化学多样性。然而,实现理想的组成-性能关系的有序MXenes的原子可调性尚未实现。在本研究中,我们展示了MoNbAlC MAX相(0≤α≤0.3)的合成,并使用密度泛函理论、Rietveld精修和电子显微镜方法,分别证实了Mo和Nb在外部和内部M层中的优先有序行为。我们还合成了它们的二维衍生物MoNbCT MXenes,并举例说明了优先有序对其析氢反应电催化行为的影响。本研究旨在激发对有序双过渡金属MXene家族的进一步探索,并为二维材料的应用驱动设计提供组成-行为工具。