Suppr超能文献

固溶体MXenes:合成、性质及应用

Solid-Solution MXenes: Synthesis, Properties, and Applications.

作者信息

Lakmal Arunoda, Thombre Pratiksha B, Shuck Christopher E

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States.

出版信息

Acc Chem Res. 2024 Oct 15;57(20):3007-3019. doi: 10.1021/acs.accounts.4c00387. Epub 2024 Oct 2.

Abstract

ConspectusMXenes, among other two-dimensional (2D) materials such as graphene, hexagonal BN, transition metal dichalcogenides (TMDs), 2D metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), are the fastest growing class discovered thus far. The general formula of MXenes is MXT, where M, X, and T represent an early transition metal (Ti, V, Nb, Mo, etc.), C and/or N, and the surface functional groups (typically, O, OH, F, Cl), respectively, and can be between 1 and 4. MXenes as a class of materials have extraordinary properties, such as high electrical conductivity, nonlinear optical properties, solution processability, scalability and ease of synthesis, redox capability, and tunable surface properties, among others; the specific properties, however, depend on their chemistry. Since the initial report of the first MXene in 2011, the research community has primarily focused on TiCT, and the amount of research work to investigate its synthesis and properties has increased exponentially over the years. In materials science, alloying is a useful way of synthesizing new materials to improve the properties of a class of materials. Advancement of steel and synthesis of inorganic semiconductors can be regarded as some of the major historical advancements in the concept of alloying. Thus, just one year after the initial report of MXenes, the first solid-solution MXene, (TiNb)CT, was reported, which demonstrates the inherent chemical tunability of this class of materials.MXenes have two sites for compositional variation: elemental substitution on both the metal (M) and carbon/nitrogen (X) sites, presenting promising routes for tailoring their properties. X-site solid-solutions include carbonitride MXenes and are the least studied class of MXenes to date. Comparatively, multi-M MXenes have acquired significant attention, leading to the extreme example of high-entropy solid-solution MXenes. By using multiple M elements, a significant expansion of the structural and chemical diversity is possible, giving rise to novel chemical, magnetic, electronic, and optical properties that cannot be accessed by single-M MXenes. Solid-solution MXenes represent the largest and most tunable class of MXenes; solid-solution MXenes are those that have multiple metals that are randomly distributed on their M sites with no distinct chemical ordering. Using multiple M elements in MXenes, it is possible to synthesize novel MXene structures that cannot be produced otherwise, such as MXT MXenes. Based on their chemistry, it is possible to rationally control the electronic, optical, mechanical, and chemical properties in a way that no other class of MXenes can. In some cases, the resultant property is linearly related to the chemistry, such as the electrical conductivity, while in other cases the properties are nonlinear or emergent: optical properties, enabling these MXenes to fulfill roles that no other MXene, or 2D material, can.In this Account, we discuss the recent progress in the synthesis, properties, applications, and outlook of solid-solution MXenes. Importantly, we demonstrate how multi-M solid-solutions can be used to tailor properties for specific applications easily.

摘要

综述

在其他二维(2D)材料,如石墨烯、六方氮化硼、过渡金属二硫属化物(TMDs)、二维金属有机框架(MOFs)和共价有机框架(COFs)中,MXenes是迄今为止发现的增长最快的一类材料。MXenes的通式为MₙXTₓ,其中M、X和T分别代表早期过渡金属(Ti、V、Nb、Mo等)、C和/或N以及表面官能团(通常为O、OH、F、Cl),n可以在1到4之间。作为一类材料,MXenes具有非凡的性能,如高导电性、非线性光学性能、溶液可加工性、可扩展性和易于合成、氧化还原能力以及可调节的表面性能等;然而,具体性能取决于它们的化学组成。自2011年首次报道第一种MXene以来,研究界主要集中在Ti₃C₂Tₓ上,多年来,研究其合成和性能的研究工作量呈指数级增长。在材料科学中,合金化是合成新材料以改善一类材料性能的有用方法。钢铁的进步和无机半导体的合成可被视为合金化概念的一些主要历史进步。因此,在MXenes首次报道仅一年后,就报道了第一种固溶体MXene,(TiNb)₃C₂Tₓ,这证明了这类材料固有的化学可调性。

MXenes有两个成分变化的位点:金属(M)和碳/氮(X)位点上的元素取代,为调整其性能提供了有前景的途径。X位点固溶体包括碳氮化物MXenes,是迄今为止研究最少的一类MXenes。相比之下,多M MXenes受到了广泛关注,导致了高熵固溶体MXenes这一极端例子。通过使用多种M元素,可以显著扩展结构和化学多样性,产生单M MXenes无法获得的新颖化学、磁性、电子和光学性能。固溶体MXenes代表了最大且最可调的一类MXenes;固溶体MXenes是指那些在其M位点上有多种金属随机分布且没有明显化学有序性的MXenes。在MXenes中使用多种M元素,可以合成其他方式无法制备的新型MXene结构,如MₙXTₓ MXenes。基于它们的化学组成,可以以其他类MXenes无法做到的方式合理控制电子、光学、机械和化学性能。在某些情况下,所得性能与化学组成呈线性关系,如电导率,而在其他情况下,性能是非线性或涌现的:光学性能,使这些MXenes能够发挥其他MXene或二维材料无法发挥的作用。

在本综述中,我们讨论了固溶体MXenes在合成、性能、应用和前景方面的最新进展。重要的是,我们展示了多M固溶体如何轻松用于为特定应用定制性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验