Department of Chemistry, University of Virginia, 22904, Charlottesville, USA.
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, USA.
Angew Chem Int Ed Engl. 2023 May 8;62(20):e202217777. doi: 10.1002/anie.202217777. Epub 2023 Mar 6.
The general lack of permeability of small molecules observed for Mycobacterium tuberculosis (Mtb) is most ascribed to its unique cell envelope. More specifically, the outer mycomembrane is hypothesized to be the principal determinant for access of antibiotics to their molecular targets. We describe a novel assay that combines metabolic tagging of the peptidoglycan, which sits directly beneath the mycomembrane, click chemistry of test molecules, and a fluorescent labeling chase step, to measure the permeation of small molecules. We showed that the assay workflow was robust and compatible with high-throughput analysis in mycobacteria by testing a small panel of azide-tagged molecules. The general trend is similar across the two types of mycobacteria with some notable exceptions. We anticipate that this assay platform will lay the foundation for medicinal chemistry efforts to understand and improve uptake of both existing drugs and newly-discovered compounds into mycobacteria.
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)中观察到的小分子普遍缺乏通透性,这主要归因于其独特的细胞包膜。更具体地说,外膜被认为是抗生素进入其分子靶点的主要决定因素。我们描述了一种新的测定方法,该方法结合了直接位于外膜下方的肽聚糖的代谢标记、测试分子的点击化学和荧光标记追踪步骤,以测量小分子的渗透。我们通过测试一小部分叠氮标记的分子,表明该测定方法具有稳健性,并且与分枝杆菌中的高通量分析兼容。两种分枝杆菌的总体趋势相似,但也有一些值得注意的例外。我们预计,该测定平台将为药物化学研究奠定基础,以了解和改善现有药物和新发现化合物进入分枝杆菌的摄取。