Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver V5Z 1L3, Canada.
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby V5A 1S6, Canada.
J Proteome Res. 2023 Feb 3;22(2):526-531. doi: 10.1021/acs.jproteome.2c00538. Epub 2023 Jan 26.
Targeted and semitargeted mass spectrometry-based approaches are reliable methods to consistently detect and quantify low abundance proteins including proteins of clinical significance. Despite their potential, the development of targeted and semitargeted assays is time-consuming and often requires the purchase of costly libraries of synthetic peptides. To improve the efficiency of this rate-limiting step, we developed PeptideRanger, a tool to identify peptides from protein of interest with physiochemical properties that make them more likely to be suitable for mass spectrometry analysis. PeptideRanger is a flexible, extensively annotated, and intuitive R package that uses a random forest model trained on a diverse data set of thousands of MS experiments spanning a variety of sample types profiled with different chromatography setups and instruments. To support a variety of applications and to leverage rapidly growing public MS databases, PeptideRanger can readily be retrained with experiment-specific data sets and customized to prioritize and filter peptides based on selected properties.
基于靶向和半靶向的质谱方法是可靠的方法,可以一致地检测和定量低丰度蛋白质,包括具有临床意义的蛋白质。尽管它们具有潜力,但靶向和半靶向检测方法的开发既耗时又昂贵,通常需要购买昂贵的合成肽文库。为了提高这个限速步骤的效率,我们开发了 PeptideRanger,这是一种从感兴趣的蛋白质中识别具有使其更适合质谱分析的物理化学性质的肽的工具。PeptideRanger 是一个灵活、广泛注释和直观的 R 包,它使用随机森林模型,该模型经过数千次 MS 实验的数据集训练,涵盖了各种不同的样本类型,这些样本类型采用不同的色谱设置和仪器进行了分析。为了支持各种应用,并利用快速增长的公共 MS 数据库,PeptideRanger 可以很容易地使用特定于实验的数据集进行重新训练,并根据选定的属性对肽进行优先级排序和过滤。