Qiao Jie, Sheng Yijie, Wang Minghui, Li Anni, Li Xiujuan, Huang He
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China.
School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, China.
Angew Chem Int Ed Engl. 2023 Mar 13;62(12):e202300320. doi: 10.1002/anie.202300320. Epub 2023 Feb 9.
Obtaining a robust and applicable enzyme for bioethanol production is a dream for biorefinery engineers. Herein, we describe a general method to evolve an all-round and interpretable enzyme that can be directly employed in the bioethanol industry. By integrating the transferable protein evolution strategy InSiReP 2.0 (In Silico guided Recombination Process), enzymatic characterization for actual production, and computational molecular understanding, the model cellulase PvCel5A (endoglucanase II Cel5A from Penicillium verruculosum) was successfully evolved to overcome the remaining challenges of low ethanol and temperature tolerance, which primarily limited biomass transformation and bioethanol yield. Remarkably, application of the PvCel5A variants in both first- and second-generation bioethanol production processes (i. Conventional corn ethanol fermentation combined with the in situ pretreatment process; ii. cellulosic ethanol fermentation process) resulted in a 5.7-10.1 % increase in the ethanol yield, which was unlikely to be achieved by other optimization techniques.
获得一种用于生物乙醇生产的强大且适用的酶是生物精炼工程师的梦想。在此,我们描述了一种通用方法,用于进化出一种可直接应用于生物乙醇行业的全面且可解释的酶。通过整合可转移蛋白质进化策略InSiReP 2.0(计算机辅助重组过程)、实际生产中的酶学表征以及计算分子理解,模型纤维素酶PvCel5A(来自疣孢青霉的内切葡聚糖酶II Cel5A)成功进化,克服了低乙醇耐受性和温度耐受性这两个主要限制生物质转化和生物乙醇产量的剩余挑战。值得注意的是,PvCel5A变体在第一代和第二代生物乙醇生产过程(i. 传统玉米乙醇发酵与原位预处理过程相结合;ii. 纤维素乙醇发酵过程)中的应用使乙醇产量提高了5.7 - 10.1%,这是其他优化技术不太可能实现的。