Suppr超能文献

脑瘫步态痉挛严重程度的决定因素。

Determinants of gait dystonia severity in cerebral palsy.

机构信息

Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.

Department of Neurological Sciences, Rush University, Chicago, IL, USA.

出版信息

Dev Med Child Neurol. 2023 Jul;65(7):968-977. doi: 10.1111/dmcn.15524. Epub 2023 Jan 26.

Abstract

AIM

To determine the movement features governing expert assessment of gait dystonia severity in individuals with cerebral palsy (CP).

METHOD

In this prospective cohort study, three movement disorder neurologists graded lower extremity dystonia severity in gait videos of individuals with CP using a 10-point Likert-like scale. Using conventional content analysis, we determined the features experts cited when grading dystonia severity. Then, using open-source pose estimation techniques, we determined gait variable analogs of these expert-cited features correlating with their assessments of dystonia severity.

RESULTS

Experts assessed videos from 116 participants (46 with dystonia aged 15 years [SD 3] and 70 without dystonia aged 15 years [SD 2], both groups ranging 10-20 years old and 50% male). Variable limb adduction was most commonly cited by experts when identifying dystonia, comprising 60% of expert statements. Effect on gait (regularity, stability, trajectory, speed) and dystonia amplitude were common features experts used to determine dystonia severity, comprising 19% and 13% of statements respectively. Gait variables assessing adduction variability and amplitude (inter-ankle distance variance and foot adduction amplitude) were significantly correlated with expert assessment of dystonia severity (multiple linear regression, p < 0.001).

INTERPRETATION

Adduction variability and amplitude are quantifiable gait features that correlate with expert-determined gait dystonia severity in individuals with CP. Consideration of these features could help optimize and standardize the clinical assessment of gait dystonia severity in individuals with CP.

摘要

目的

确定脑瘫(CP)患者步态运动障碍严重程度的专家评估所依据的运动特征。

方法

在这项前瞻性队列研究中,3 位运动障碍神经病学家使用 10 分李克特量表对 CP 患者的步态视频中的下肢运动障碍严重程度进行分级。采用常规内容分析,我们确定了专家在分级运动障碍严重程度时引用的特征。然后,我们使用开源姿势估计技术,确定了与他们评估运动障碍严重程度相关的这些专家引用特征的步态变量类似物。

结果

专家评估了来自 116 名参与者的视频(46 名有运动障碍的参与者年龄为 15 岁[标准差 3],70 名无运动障碍的参与者年龄为 15 岁[标准差 2],两组年龄均在 10-20 岁之间,且 50%为男性)。在识别运动障碍时,变量肢体内收最常被专家引用,占专家陈述的 60%。对步态(规律性、稳定性、轨迹、速度)和运动障碍幅度的影响是专家用来确定运动障碍严重程度的常见特征,分别占陈述的 19%和 13%。评估内收变异性和幅度的步态变量(踝间距离方差和足内收幅度)与专家对运动障碍严重程度的评估显著相关(多元线性回归,p<0.001)。

结论

内收变异性和幅度是可量化的步态特征,与 CP 患者中专家确定的步态运动障碍严重程度相关。考虑这些特征可以帮助优化和标准化 CP 患者步态运动障碍严重程度的临床评估。

相似文献

1
Determinants of gait dystonia severity in cerebral palsy.脑瘫步态痉挛严重程度的决定因素。
Dev Med Child Neurol. 2023 Jul;65(7):968-977. doi: 10.1111/dmcn.15524. Epub 2023 Jan 26.
2
Gait features of dystonia in cerebral palsy.脑瘫性肌张力障碍的步态特征。
Dev Med Child Neurol. 2021 Jun;63(6):748-754. doi: 10.1111/dmcn.14802. Epub 2021 Jan 7.
5
Upper Extremity Dystonia Features in People With Spastic Cerebral Palsy.痉挛型脑瘫患者的上肢肌张力障碍特征
Neurol Clin Pract. 2023 Dec;13(6):e200207. doi: 10.1212/CPJ.0000000000200207. Epub 2023 Sep 29.
6
Future directions for the assessment of gait dystonia in cerebral palsy.
Dev Med Child Neurol. 2023 Jul;65(7):865-866. doi: 10.1111/dmcn.15523. Epub 2023 Jan 30.
7
Caregiver descriptions of dystonia in cerebral palsy.照顾者对脑瘫性肌张力障碍的描述。
Ann Clin Transl Neurol. 2024 Feb;11(2):242-250. doi: 10.1002/acn3.51941. Epub 2024 Jan 4.
10
Deep brain stimulation for the treatment of childhood dystonic cerebral palsy.深部脑刺激治疗儿童肌张力障碍型脑瘫。
J Neurosurg Pediatr. 2014 Dec;14(6):585-93. doi: 10.3171/2014.8.PEDS141. Epub 2014 Oct 17.

引用本文的文献

7
Caregiver descriptions of dystonia in cerebral palsy.照顾者对脑瘫性肌张力障碍的描述。
Ann Clin Transl Neurol. 2024 Feb;11(2):242-250. doi: 10.1002/acn3.51941. Epub 2024 Jan 4.
8
Upper Extremity Dystonia Features in People With Spastic Cerebral Palsy.痉挛型脑瘫患者的上肢肌张力障碍特征
Neurol Clin Pract. 2023 Dec;13(6):e200207. doi: 10.1212/CPJ.0000000000200207. Epub 2023 Sep 29.

本文引用的文献

6
Gait features of dystonia in cerebral palsy.脑瘫性肌张力障碍的步态特征。
Dev Med Child Neurol. 2021 Jun;63(6):748-754. doi: 10.1111/dmcn.14802. Epub 2021 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验