Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124Pisa, Italy.
J Chem Theory Comput. 2023 Feb 14;19(3):965-977. doi: 10.1021/acs.jctc.2c01044. Epub 2023 Jan 26.
We propose a machine learning (ML)-based strategy for an inexpensive calculation of excitonic properties of light-harvesting complexes (LHCs). The strategy uses classical molecular dynamics simulations of LHCs in their natural environment in combination with ML prediction of the excitonic Hamiltonian of the embedded aggregate of pigments. The proposed ML model can reproduce the effects of geometrical fluctuations together with those due to electrostatic and polarization interactions between the pigments and the protein. The training is performed on the chlorophylls of the major LHC of plants, but we demonstrate that the model is able to extrapolate well beyond the initial training set. Moreover, the accuracy in predicting the effects of the environment is tested on the simulation of the small changes observed in the absorption spectra of the wild-type and a mutant of a minor LHC.
我们提出了一种基于机器学习(ML)的策略,用于低成本计算光捕获复合物(LHCs)的激子性质。该策略使用 LHCs 在其自然环境中的经典分子动力学模拟,并结合嵌入的色素聚集体的激子哈密顿量的 ML 预测。所提出的 ML 模型可以重现几何波动的影响,以及色素和蛋白质之间的静电和极化相互作用的影响。训练是在植物的主要 LHC 的叶绿素上进行的,但我们证明该模型能够很好地外推超出初始训练集。此外,还通过模拟野生型和一个次要 LHC 的突变体的吸收光谱中观察到的小变化,测试了环境影响预测的准确性。