Suppr超能文献

机器学习在光捕获复合物中的激发子哈密顿量。

Machine Learning Exciton Hamiltonians in Light-Harvesting Complexes.

机构信息

Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124Pisa, Italy.

出版信息

J Chem Theory Comput. 2023 Feb 14;19(3):965-977. doi: 10.1021/acs.jctc.2c01044. Epub 2023 Jan 26.

Abstract

We propose a machine learning (ML)-based strategy for an inexpensive calculation of excitonic properties of light-harvesting complexes (LHCs). The strategy uses classical molecular dynamics simulations of LHCs in their natural environment in combination with ML prediction of the excitonic Hamiltonian of the embedded aggregate of pigments. The proposed ML model can reproduce the effects of geometrical fluctuations together with those due to electrostatic and polarization interactions between the pigments and the protein. The training is performed on the chlorophylls of the major LHC of plants, but we demonstrate that the model is able to extrapolate well beyond the initial training set. Moreover, the accuracy in predicting the effects of the environment is tested on the simulation of the small changes observed in the absorption spectra of the wild-type and a mutant of a minor LHC.

摘要

我们提出了一种基于机器学习(ML)的策略,用于低成本计算光捕获复合物(LHCs)的激子性质。该策略使用 LHCs 在其自然环境中的经典分子动力学模拟,并结合嵌入的色素聚集体的激子哈密顿量的 ML 预测。所提出的 ML 模型可以重现几何波动的影响,以及色素和蛋白质之间的静电和极化相互作用的影响。训练是在植物的主要 LHC 的叶绿素上进行的,但我们证明该模型能够很好地外推超出初始训练集。此外,还通过模拟野生型和一个次要 LHC 的突变体的吸收光谱中观察到的小变化,测试了环境影响预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9256/9933434/cc19746ae66c/ct2c01044_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验