Suppr超能文献

空气中的光学捕获结合拉曼光谱和激光诱导击穿光谱对单个微米级气溶胶的定性分析。

Individual Micron-Sized Aerosol Qualitative Analysis-Combined Raman Spectroscopy and Laser-Induced Breakdown Spectroscopy by Optical Trapping in Air.

机构信息

Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China.

State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China.

出版信息

Anal Chem. 2023 Feb 7;95(5):2874-2883. doi: 10.1021/acs.analchem.2c04411. Epub 2023 Jan 26.

Abstract

The attribution of single particle sources of atmospheric aerosols is an essential problem in the study of air pollution. However, it is still difficult to qualitatively analyze the source of a single aerosol particle using noncontact in situ techniques. Hence, we proposed using optical trapping to combine gated Raman spectroscopy with laser-induced breakdown spectroscopy (LIBS) in a single levitated micron aerosol. The findings of the spectroscopic imaging indicated that the particle plasma formed by a single particle ablation with a pulsed laser within 7 ns deviates from the trapped particle location. The LIBS acquisition field of view was expanded using the 19-bundle fiber, which also reduces the fluctuation of a single particle signal. In addition, gated Raman was utilized to suppress the fluorescence and increase the Raman signal-to-noise ratio. Based on this, Raman can measure hard-to-ionize substances with LIBS, such as sulfates. The LIBS radical can overcome the restriction that Raman cannot detect ionic chemicals like fluoride and chloride in halogens. To test the capability of directly identifying distinctive feature compounds utilizing spectra, we detected anions using Raman spectroscopy and cations using LIBS. Four typical mineral aerosols are subjected to precise qualitative evaluations (marble, gypsum, baking soda, and activated carbon adsorbed potassium bicarbonate). To further validate the application potential for substances with indistinctive feature discrimination, we employed machine learning algorithms to conduct a qualitative analysis of the coal aerosol from ten different origin regions. Three data fusion methodologies (early fusion, intermediate fusion, and late fusion) for Raman and LIBS are implemented, respectively. The accuracy of the late fusion model prediction using StackingClassifier is higher than that of the LIBS data (66.7%) and Raman data (86.1%) models, with an average accuracy of 90.6%. This research has the potential to provide online single aerosol analysis as well as technical assistance for aerosol monitoring and early warning.

摘要

大气气溶胶单颗粒源的归属是空气污染研究中的一个基本问题。然而,使用非接触原位技术定性分析单个气溶胶颗粒的源仍然很困难。因此,我们提出使用光学捕获将门控拉曼光谱与激光诱导击穿光谱(LIBS)结合在单个悬浮微米气溶胶中。光谱成像的结果表明,在 7 ns 内用脉冲激光烧蚀单个粒子形成的粒子等离子体偏离了捕获粒子的位置。通过使用 19 束光纤扩展了 LIBS 采集视场,这也降低了单个粒子信号的波动。此外,使用门控拉曼抑制荧光并提高拉曼信号与噪声比。在此基础上,LIBS 可以测量难以电离的物质,如硫酸盐。LIBS 自由基可以克服 Raman 无法检测卤素中氟化物和氯化物等离子化学物质的限制。为了测试利用光谱直接识别特征化合物的能力,我们使用拉曼光谱检测阴离子,使用 LIBS 检测阳离子。对四种典型的矿物气溶胶(大理石、石膏、小苏打和活性炭吸附的碳酸氢钾)进行了精确的定性评估。为了进一步验证对具有特征区分能力的物质的应用潜力,我们使用机器学习算法对来自十个不同来源地区的煤气溶胶进行了定性分析。分别实现了 Raman 和 LIBS 的三种数据融合方法(早期融合、中间融合和晚期融合)。使用 StackingClassifier 的晚期融合模型预测的准确率高于 LIBS 数据(66.7%)和 Raman 数据(86.1%)模型,平均准确率为 90.6%。这项研究有可能为在线单气溶胶分析以及气溶胶监测和预警提供技术支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验