Suppr超能文献

Twist-Net:一种具有混合双边编码器的多模态迁移学习网络,用于下咽癌分割。

Twist-Net: A multi-modality transfer learning network with the hybrid bilateral encoder for hypopharyngeal cancer segmentation.

机构信息

Beijing University of Technology, Beijing, China.

Beijing University of Technology, Beijing, China; Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing, China.

出版信息

Comput Biol Med. 2023 Mar;154:106555. doi: 10.1016/j.compbiomed.2023.106555. Epub 2023 Jan 13.

Abstract

Hypopharyngeal cancer (HPC) is a rare disease. Therefore, it is a challenge to automatically segment HPC tumors and metastatic lymph nodes (HPC risk areas) from medical images with the small-scale dataset. Combining low-level details and high-level semantics from feature maps in different scales can improve the accuracy of segmentation. Herein, we propose a Multi-Modality Transfer Learning Network with Hybrid Bilateral Encoder (Twist-Net) for Hypopharyngeal Cancer Segmentation. Specifically, we propose a Bilateral Transition (BT) block and a Bilateral Gather (BG) block to twist (fuse) high-level semantic feature maps and low-level detailed feature maps. We design a block with multi-receptive field extraction capabilities, M Block, to capture multi-scale information. To avoid overfitting caused by the small scale of the dataset, we propose a transfer learning method that can transfer priors experience from large computer vision datasets to multi-modality medical imaging datasets. Compared with other methods, our method outperforms other methods on HPC dataset, achieving the highest Dice of 82.98%. Our method is also superior to other methods on two public medical segmentation datasets, i.e., the CHASE_DB1 dataset and BraTS2018 dataset. On these two datasets, the Dice of our method is 79.83% and 84.87%, respectively. The code is available at: https://github.com/zhongqiu1245/TwistNet.

摘要

下咽癌(HPC)是一种罕见的疾病。因此,使用小规模数据集自动从医学图像中分割 HPC 肿瘤和转移性淋巴结(HPC 风险区域)是一项挑战。结合不同尺度特征图中的低层次细节和高层次语义可以提高分割的准确性。在此,我们提出了一种用于下咽癌分割的多模态迁移学习网络,具有混合双边编码器(Twist-Net)。具体来说,我们提出了双边转换(BT)块和双边收集(BG)块来扭转(融合)高层次语义特征图和低层次详细特征图。我们设计了一个具有多感受野提取能力的块,即 M 块,以捕获多尺度信息。为了避免由于数据集规模较小而导致的过拟合,我们提出了一种迁移学习方法,可以将大计算机视觉数据集的先验经验转移到多模态医学成像数据集。与其他方法相比,我们的方法在 HPC 数据集上的表现优于其他方法,Dice 达到了 82.98%。我们的方法在两个公共医学分割数据集,即 CHASE_DB1 数据集和 BraTS2018 数据集上也优于其他方法。在这两个数据集上,我们的方法的 Dice 分别为 79.83%和 84.87%。代码可在:https://github.com/zhongqiu1245/TwistNet 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验