He Yanlin, Sun Hui, Yi Yugen, Chen Wenhe, Kong Jun, Zheng Caixia
College of Information Sciences and Technology, Northeast Normal University, Changchun, China.
Changchun Humanities and Sciences College, Changchun, China.
Med Phys. 2022 May;49(5):3144-3158. doi: 10.1002/mp.15546. Epub 2022 Feb 25.
Accurately segmenting curvilinear structures, for example, retinal blood vessels or nerve fibers, in the medical image is essential to the clinical diagnosis of many diseases. Recently, deep learning has become a popular technology to deal with the image segmentation task, and it has obtained remarkable achievement. However, the existing methods still have many problems when segmenting the curvilinear structures in medical images, such as losing the details of curvilinear structures, producing many false-positive segmentation results. To mitigate these problems, we propose a novel end-to-end curvilinear structure segmentation network called Curv-Net.
Curv-Net is an effective encoder-decoder architecture constructed based on selective kernel (SK) and multibidirectional convolutional LSTM (multi-Bi-ConvLSTM). To be specific, we first employ the SK module in the convolutional layer to adaptively extract the multi-scale features of the input image, and then we design a multi-Bi-ConvLSTM as the skip concatenation to fuse the information learned in the same stage and propagate the feature information from the deep stages to the shallow stages, which can enable the feature captured by Curv-Net to contain more detail information and high-level semantic information simultaneously to improve the segmentation performance.
The effectiveness and reliability of our proposed Curv-Net are verified on three public datasets: two color fundus datasets (DRIVE and CHASE_DB1) and one corneal nerve fiber dataset (CCM-2). We calculate the accuracy (ACC), sensitivity (SE), specificity (SP), Dice similarity coefficient (Dice), and area under the receiver (AUC) for the DRIVE and CHASE_DB1 datasets. The ACC, SE, SP, Dice, and AUC of the DRIVE dataset are 0.9629, 0.8175, 0.9858, 0.8352, and 0.9810, respectively. For the CHASE_DB1 dataset, the values are 0.9810, 0.8564, 0.9899, 0.8143, and 0.9832, respectively. To validate the corneal nerve fiber segmentation performance of the proposed Curv-Net, we test it on the CCM-2 dataset and calculate Dice, SE, and false discovery rate (FDR) metrics. The Dice, SE, and FDR achieved by Curv-Net are 0.8114 ± 0.0062, 0.8903 ± 0.0113, and 0.2547 ± 0.0104, respectively.
Curv-Net is evaluated on three public datasets. Extensive experimental results demonstrate that Curv-Net outperforms the other superior curvilinear structure segmentation methods.
在医学图像中准确分割曲线结构,例如视网膜血管或神经纤维,对于许多疾病的临床诊断至关重要。近年来,深度学习已成为处理图像分割任务的流行技术,并取得了显著成果。然而,现有方法在分割医学图像中的曲线结构时仍存在许多问题,如丢失曲线结构的细节、产生许多假阳性分割结果。为缓解这些问题,我们提出了一种名为Curv-Net的新型端到端曲线结构分割网络。
Curv-Net是一种基于选择性内核(SK)和多双向卷积长短期记忆网络(multi-Bi-ConvLSTM)构建的有效编码器-解码器架构。具体而言,我们首先在卷积层中使用SK模块自适应地提取输入图像的多尺度特征,然后设计一个多双向卷积长短期记忆网络作为跳跃连接,以融合同一阶段学到的信息,并将深层阶段的特征信息传播到浅层阶段,这可以使Curv-Net捕获的特征同时包含更多细节信息和高级语义信息,从而提高分割性能。
我们提出的Curv-Net的有效性和可靠性在三个公共数据集上得到了验证:两个彩色眼底数据集(DRIVE和CHASE_DB1)和一个角膜神经纤维数据集(CCM-2)。我们计算了DRIVE和CHASE_DB1数据集的准确率(ACC)、灵敏度(SE)、特异性(SP)、骰子相似系数(Dice)和接收器操作特征曲线下面积(AUC)。DRIVE数据集的ACC、SE、SP、Dice和AUC分别为0.9629、0.8175、0.9858、0.8352和0.9810。对于CHASE_DB1数据集,这些值分别为0.9810、0.8564、0.9899、0.8143和0.9832。为验证所提出的Curv-Net的角膜神经纤维分割性能,我们在CCM-2数据集上对其进行测试,并计算Dice、SE和错误发现率(FDR)指标。Curv-Net实现的Dice、SE和FDR分别为0.8114±0.0062、0.8903±0.0113和0.2547±0.0104。
Curv-Net在三个公共数据集上进行了评估。大量实验结果表明,Curv-Net优于其他先进的曲线结构分割方法。