Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Department of Physics, Southern University of Science and Technology, Shenzhen, China.
Nat Commun. 2023 Jan 26;14(1):426. doi: 10.1038/s41467-023-35900-x.
Pyroelectricity originates from spontaneous polarization variation, promising in omnipresent non-static thermodynamic energy harvesting. Particularly, changing spontaneous polarization via out-of-plane uniform heat perturbations has been shown in solar pyroelectrics. However, these approaches present unequivocal inefficiency due to spatially coupled low temperature change and duration along the longitudinal direction. Here we demonstrate unconventional giant polarization ripples in transverse pyroelectrics, without increasing the total energy input, into electricity with an efficiency of 5-fold of conventional longitudinal counterparts. The non-uniform graded temperature variation arises from decoupled heat localization and propagation, leading to anomalous in-plane heat perturbation (29-fold) and enhanced thermal disequilibrium effects. This in turn triggers an augmented polarization ripple, fundamentally enabling unprecedented electricity generation performance. Notably, the device generates a power density of 38 mW m at 1 sun illumination, which is competitive with solar thermoelectrics and ferrophotovoltaics. Our findings provide a viable paradigm, not only for universal practical pyroelectric heat harvesting but for flexible manipulation of transverse heat transfer towards sustainable energy harvesting and management.
热释电性源于自发极化的变化,有望在无处不在的非静态热力学能量收集方面取得突破。特别是,通过平面外均匀热扰动来改变自发极化已经在太阳能热释电中得到了证明。然而,这些方法由于沿纵向存在空间耦合的低温变化和持续时间,效率明显不高。在这里,我们展示了在横向热释电体中产生的非常规的巨大极化波纹,无需增加总能量输入,就可以将效率提高到传统纵向热释电体的 5 倍。非均匀的渐变温度变化源于热局域化和传播的解耦,导致异常的面内热扰动(29 倍)和增强的热不平衡效应。这反过来又引发了极化波纹的增强,从根本上实现了前所未有的发电性能。值得注意的是,该器件在 1 个太阳光照下产生了 38 mW/m 的功率密度,与太阳能热电器件和铁光电池相当。我们的发现为通用实用的热释电热收集提供了一种可行的范例,不仅如此,还为灵活控制横向热传递提供了新途径,以实现可持续的能量收集和管理。