Suppr超能文献

Molecular cloning and sequence of a cholesterol-repressible enzyme related to prenyltransferase in the isoprene biosynthetic pathway.

作者信息

Clarke C F, Tanaka R D, Svenson K, Wamsley M, Fogelman A M, Edwards P A

机构信息

Department of Medicine, School of Medicine, University of California, Los Angeles 90024.

出版信息

Mol Cell Biol. 1987 Sep;7(9):3138-46. doi: 10.1128/mcb.7.9.3138-3146.1987.

Abstract

Differential hybridization and molecular cloning have been used to isolate CR39, a cDNA which hybridizes to a 1.2-kilobase (kb) mRNA in rat liver. The level of CR39 mRNA was increased seven- to ninefold over normal levels by dietary cholestyramine and mevinolin and decreased about fourfold compared with normal levels by cholesterol feeding or administration of mevalonate. Similar changes in the mRNA levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and HMG-CoA synthase were observed under the various conditions. In vitro translation of either CR39 hybrid selected RNA or 1.2-kb CR39 RNA generated by an SP6 in vitro transcription system produced a polypeptide of 39,000 daltons. As deduced from the nucleotide sequence of a full-length CR39 cDNA, the rat CR39 polypeptide contained 344 amino acids and had a molecular weight of 39,615. The predicted amino acid composition and submit molecular weight of the rat CR39 were very similar to those of prenyltransferases isolated from chicken, pig, and human. The sequence of amino acid residues 173 through 203 in the rat CR39 polypeptide showed that 17 out of 30 matched an active-site peptide of avian liver prenyltransferase. Thus, alterations in the rate of cholesterogenesis resulted in the coordinate regulation of three mRNAs encoding HMG-CoA reductase, HMG-CoA synthase, and CR39, the latter being tentatively identified as prenyltransferase.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b91e/367948/9f14b5027b9c/molcellb00081-0124-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验