School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.
Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Small. 2023 Jun;19(23):e2207666. doi: 10.1002/smll.202207666. Epub 2023 Jan 26.
H O -fueled micromotors are state-of-the-art mobile microreactors in environmental remediation. In this work, a magnetic FeO @MnO @SiO micromotor with multi-functions is designed and demonstrated its catalytic performance in H O /peroxymonosulfate (PMS) activation for simultaneously sustained motion and organic degradation. Moreover, this work reveals the correlations between catalytic efficiency and motion behavior/mechanism. The inner magnetic FeO nanoellipsoids primarily trigger radical species ( OH and O ) to attack organics via Fenton-like reactions. The coated MnO layers on FeO surface are responsible for decomposing H O into O bubbles to provide a propelling torque in the solution and generating SO and OH for organic degradation. The outer SiO microcapsules with a hollow head and tail result in an asymmetrical Janus structure for the motion, driven by O bubbles ejecting from the inner cavity via the opening tail. Intriguingly, PMS adjusts the local environment to control over-violent O formation from H O decomposition by occupying the Mn sites via inter-sphere interactions and enhances organic removal due to the strengthened contacts and Fenton-like reactions between inner FeO and peroxides within the microreactor. The findings will advance the design of functional micromotors and the knowledge of micromotor-based remediation with controlled motion and high-efficiency oxidation using multiple peroxides.
基于 H O 的燃料的微型马达是环境修复领域中最先进的移动微型反应器。在这项工作中,设计了一种具有多功能的磁性 FeO@MnO@SiO 微马达,并证明了其在 H O/过一硫酸盐 (PMS) 激活中的催化性能,用于同时持续运动和有机降解。此外,这项工作揭示了催化效率与运动行为/机制之间的相关性。内部的磁性 FeO 纳米椭球体主要通过类芬顿反应引发自由基物种 (OH 和 O ) 攻击有机物。表面的 MnO 层负责将 H O 分解为 O 气泡,为溶液提供推进扭矩,并生成 SO 和 OH 用于有机降解。具有空心头部和尾部的外部 SiO 微胶囊导致不对称的詹纳斯结构的运动,这是通过从内部空腔通过开口尾部喷出的 O 气泡驱动的。有趣的是,PMS 通过占据 Mn 位来调整局部环境,以控制 H O 分解产生的过强 O 的形成,这种通过球体间相互作用来占据 Mn 位的方式,并通过微反应器内的内 FeO 和过氧化物之间的强化接触和类芬顿反应来增强有机去除。这些发现将推进功能微型马达的设计,并推进基于微型马达的修复技术的发展,该技术可通过控制运动和使用多种过氧化物进行高效氧化。