Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, China.
Adv Sci (Weinh). 2023 Mar;10(7):e2204596. doi: 10.1002/advs.202204596. Epub 2023 Jan 26.
Mitochondrial dysfunction has been recognized as the key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). The dysregulation of mitochondrial calcium ion (Ca ) homeostasis and the mitochondrial permeability transition pore (mPTP), is a critical upstream signaling pathway that contributes to the mitochondrial dysfunction cascade in AD pathogenesis. Herein, a "two-hit braking" therapeutic strategy to synergistically halt mitochondrial Ca overload and mPTP opening to put the mitochondrial dysfunction cascade on a brake is proposed. To achieve this goal, magnesium ion (Mg ), a natural Ca antagonist, and siRNA to the central mPTP regulator cyclophilin D (CypD), are co-encapsulated into the designed nano-brake; A matrix metalloproteinase 9 (MMP9) activatable cell-penetrating peptide (MAP) is anchored on the surface of nano-brake to overcome the blood-brain barrier (BBB) and realize targeted delivery to the mitochondrial dysfunction cells of the brain. Nano-brake treatment efficiently halts the mitochondrial dysfunction cascade in the cerebrovascular endothelial cells, neurons, and microglia and powerfully alleviates AD neuropathology and rescues cognitive deficits. These findings collectively demonstrate the potential of advanced design of nanotherapeutics to halt the key upstream signaling pathways of mitochondrial dysfunction to provide a powerful strategy for AD modifying therapy.
线粒体功能障碍已被认为是大多数神经退行性疾病(包括阿尔茨海默病(AD))的关键发病机制。线粒体钙离子(Ca )稳态和线粒体通透性转换孔(mPTP)的失调是一个关键的上游信号通路,有助于 AD 发病机制中线粒体功能障碍级联的发生。在此,提出了一种“双重制动”治疗策略,以协同阻止线粒体 Ca 过载和 mPTP 开放,从而使线粒体功能障碍级联处于制动状态。为了实现这一目标,将镁离子(Mg ),一种天然的 Ca 拮抗剂,和针对中央 mPTP 调节因子亲环素 D(CypD)的 siRNA 共同包封到设计的纳米制动系统中;基质金属蛋白酶 9(MMP9)激活的穿透肽(MAP)锚定在纳米制动系统的表面,以克服血脑屏障(BBB)并实现对大脑线粒体功能障碍细胞的靶向递送。纳米制动系统治疗可有效阻止脑血管内皮细胞、神经元和小胶质细胞中线粒体功能障碍级联的发生,并强力缓解 AD 神经病理学和认知功能障碍。这些发现共同证明了先进的纳米治疗设计可以阻止线粒体功能障碍的关键上游信号通路,为 AD 修饰治疗提供了一种强大的策略。