Suppr超能文献

黏膜微生物组可预测北美的儿科克罗恩病在不同地理区域的发病情况。

Mucosal microbiome is predictive of pediatric Crohn's disease across geographic regions in North America.

机构信息

Suite 200, Baylor Health Care System, Austin, Texas, 78735, USA.

Baylor College of Medicine, Houston, USA.

出版信息

F1000Res. 2022 Feb 8;11:156. doi: 10.12688/f1000research.108810.2. eCollection 2022.

Abstract

Patients with Crohn's disease (CD) have an altered intestinal microbiome, which may facilitate novel diagnostic testing. However, accuracy of microbiome classification models across geographic regions may be limited. Therefore, we sought to examine geographic variation in the microbiome of patients with CD from North America and test the performance of a machine learning classification model across geographic regions. The RISK cohort included 447 pediatric patients with CD and 221 non-inflammatory bowel disease controls from across North America. Terminal ileum, rectal and fecal samples were obtained prior to treatment for microbiome analysis. We divided study sites into 3 geographic regions to examine regional microbiome differences. We trained and tested the performance of a machine learning classification model across these regions. No differences were seen in the mucosal microbiome of patients with CD across regions or in either the fecal or mucosal microbiomes of controls. Machine learning classification algorithms for patients with CD performed well across regions (area under the receiver operating characteristic curve [AUROC] range of 0.85-0.91) with the best results from terminal ileum. This study demonstrated the feasibility of microbiome based diagnostic testing in pediatric patients with CD within North America, independently from regional influences.

摘要

患有克罗恩病(CD)的患者的肠道微生物组发生了改变,这可能有助于进行新的诊断测试。然而,微生物组分类模型在地理区域之间的准确性可能受到限制。因此,我们试图研究北美 CD 患者肠道微生物组的地理变异,并测试机器学习分类模型在地理区域之间的性能。

RISK 队列包括来自北美的 447 名儿科 CD 患者和 221 名非炎症性肠病对照者。在进行微生物组分析之前,从末端回肠、直肠和粪便中获得了治疗前的样本。我们将研究地点分为 3 个地理区域,以检查区域微生物组的差异。我们在这些区域之间训练和测试了机器学习分类模型的性能。

在区域之间或在对照者的粪便或粘膜微生物组中,均未观察到 CD 患者的粘膜微生物组存在差异。CD 患者的机器学习分类算法在各个区域的表现都很好(接受者操作特征曲线下的面积 [AUROC] 范围为 0.85-0.91),以末端回肠的结果最佳。

这项研究表明,在北美范围内,基于微生物组的诊断测试在儿科 CD 患者中是可行的,不受区域影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a367/9860195/f0542e448b0b/f1000research-11-142172-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验