Suppr超能文献

细菌分类群和功能可预测儿科克罗恩病患者经肠内营养治疗后持续缓解。

Bacterial Taxa and Functions Are Predictive of Sustained Remission Following Exclusive Enteral Nutrition in Pediatric Crohn's Disease.

机构信息

Department of Pharmacology, Dalhousie University, Halifax, Canada.

Department of Pediatrics, Dalhousie University, Halifax, Canada.

出版信息

Inflamm Bowel Dis. 2020 Jun 18;26(7):1026-1037. doi: 10.1093/ibd/izaa001.

Abstract

BACKGROUND

The gut microbiome is extensively involved in induction of remission in pediatric Crohn's disease (CD) patients by exclusive enteral nutrition (EEN). In this follow-up study of pediatric CD patients undergoing treatment with EEN, we employ machine learning models trained on baseline gut microbiome data to distinguish patients who achieved and sustained remission (SR) from those who did not achieve remission nor relapse (non-SR) by 24 weeks.

METHODS

A total of 139 fecal samples were obtained from 22 patients (8-15 years of age) for up to 96 weeks. Gut microbiome taxonomy was assessed by 16S rRNA gene sequencing, and functional capacity was assessed by metagenomic sequencing. We used standard metrics of diversity and taxonomy to quantify differences between SR and non-SR patients and to associate gut microbial shifts with fecal calprotectin (FCP), and disease severity as defined by weighted Pediatric Crohn's Disease Activity Index. We used microbial data sets in addition to clinical metadata in random forests (RFs) models to classify treatment response and predict FCP levels.

RESULTS

Microbial diversity did not change after EEN, but species richness was lower in low-FCP samples (<250 µg/g). An RF model using microbial abundances, species richness, and Paris disease classification was the best at classifying treatment response (area under the curve [AUC] = 0.9). KEGG Pathways also significantly classified treatment response with the addition of the same clinical data (AUC = 0.8). Top features of the RF model are consistent with previously identified IBD taxa, such as Ruminococcaceae and Ruminococcus gnavus.

CONCLUSIONS

Our machine learning approach is able to distinguish SR and non-SR samples using baseline microbiome and clinical data.

摘要

背景

肠道微生物群广泛参与了小儿克罗恩病(CD)患者通过完全肠内营养(EEN)诱导缓解。在这项对接受 EEN 治疗的小儿 CD 患者的随访研究中,我们使用基于基线肠道微生物组数据训练的机器学习模型,区分在 24 周时达到并维持缓解(SR)的患者与未达到缓解且未复发(非 SR)的患者。

方法

共从 22 名患者(8-15 岁)中获得了 139 份粪便样本,最长可达 96 周。通过 16S rRNA 基因测序评估肠道微生物群分类,通过宏基因组测序评估功能能力。我们使用多样性和分类标准指标来量化 SR 和非 SR 患者之间的差异,并将肠道微生物群的变化与粪便钙卫蛋白(FCP)和加权小儿克罗恩病活动指数定义的疾病严重程度相关联。我们使用微生物数据集以及随机森林(RF)模型中的临床元数据来分类治疗反应并预测 FCP 水平。

结果

EEN 后微生物多样性没有变化,但低 FCP 样本(<250 µg/g)的物种丰富度较低。使用微生物丰度、物种丰富度和巴黎疾病分类的 RF 模型最能对治疗反应进行分类(曲线下面积 [AUC] = 0.9)。KEGG 途径也通过添加相同的临床数据显著分类治疗反应(AUC = 0.8)。RF 模型的主要特征与先前确定的 IBD 分类群一致,例如 Ruminococcaceae 和 Ruminococcus gnavus。

结论

我们的机器学习方法能够使用基线微生物组和临床数据区分 SR 和非 SR 样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed84/7301407/68320dfd0462/izaa001f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验