Graeffe Frans, Heikkinen Liine, Garmash Olga, Äijälä Mikko, Allan James, Feron Anaïs, Cirtog Manuela, Petit Jean-Eudes, Bonnaire Nicolas, Lambe Andrew, Favez Olivier, Albinet Alexandre, Williams Leah R, Ehn Mikael
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland.
Department of Environmental Science and Bolin Centre for Climate Research, Stockholm University, StockholmSE-10691, Sweden.
ACS Earth Space Chem. 2022 Dec 22;7(1):230-242. doi: 10.1021/acsearthspacechem.2c00314. eCollection 2023 Jan 19.
Particulate organic nitrate (pON) can be a major part of secondary organic aerosol (SOA) and is commonly quantified by indirect means from aerosol mass spectrometer (AMS) data. However, pON quantification remains challenging. Here, we set out to quantify and characterize pON in the boreal forest, through direct field observations at Station for Measuring Ecosystem Atmosphere Relationships (SMEAR) II in Hyytiälä, Finland, and targeted single-precursor laboratory studies. We utilized a long time-of-flight AMS (LToF-AMS) for aerosol chemical characterization, with a particular focus to identify C H O N ("CHON") fragments. We estimate that during springtime at SMEAR II, pON (including both the organic and nitrate part) accounts for ∼10% of the particle mass concentration (calculated by the NO/NO method) and originates mainly from the NO radical oxidation of biogenic volatile organic compounds. The majority of the background nitrate aerosol measured is organic. The CHON fragment analysis was largely unsuccessful at SMEAR II, mainly due to low concentrations of the few detected fragments. However, our findings may be useful at other sites as we identified 80 unique CHON fragments from the laboratory measurements of SOA formed from NO radical oxidation of three pON precursors (β-pinene, limonene, and guaiacol). Finally, we noted a significant effect on ion identification during the LToF-AMS high-resolution data processing, resulting in too many ions being fit, depending on whether tungsten ions (W) were used in the peak width determination. Although this phenomenon may be instrument-specific, we encourage all (LTOF-) AMS users to investigate this effect on their instrument to reduce the possibility of incorrect identifications.
颗粒有机硝酸盐(pON)可能是二次有机气溶胶(SOA)的主要组成部分,通常通过气溶胶质谱仪(AMS)数据采用间接方法进行定量。然而,pON的定量仍然具有挑战性。在这里,我们通过在芬兰于韦斯屈莱的生态系统大气关系测量站(SMEAR)II进行直接野外观测以及有针对性的单前驱体实验室研究,来对北方森林中的pON进行定量和表征。我们使用了一台长飞行时间气溶胶质谱仪(LToF - AMS)进行气溶胶化学表征,特别关注识别C、H、O、N(“CHON”)碎片。我们估计,在SMEAR II的春季期间,pON(包括有机部分和硝酸盐部分)占颗粒物质量浓度的约10%(通过NO/NO₂方法计算),并且主要源自生物源挥发性有机化合物的NO自由基氧化。所测量的大部分背景硝酸盐气溶胶是有机的。在SMEAR II进行的CHON碎片分析在很大程度上并不成功,主要原因是检测到的少数碎片浓度较低。然而,我们的发现可能对其他地点有用,因为我们从由三种pON前驱体(β - 蒎烯、柠檬烯和愈创木酚)的NO自由基氧化形成的SOA的实验室测量中识别出了80个独特的CHON碎片。最后,我们注意到在LToF - AMS高分辨率数据处理过程中对离子识别有显著影响,这取决于在峰宽确定中是否使用钨离子(W),会导致拟合的离子过多。尽管这种现象可能是特定仪器的,但我们鼓励所有(LTOF -)AMS用户研究这种对其仪器的影响,以减少错误识别的可能性。