Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.
Environ Sci Technol. 2021 Dec 21;55(24):16326-16338. doi: 10.1021/acs.est.1c05521. Epub 2021 Dec 6.
The role of anthropogenic NO emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO to explore RONO phase partitioning. These measurements show that, on average, one-fourth of RONO are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO. Furthermore, we observe that the fraction of RONO in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO phase distribution. Lastly, we model RONO chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO, but there is a large missing source of semivolatile, anthropogenically derived RONO. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.
人为氮氧化物排放对二次有机气溶胶(SOA)形成的作用尚未完全了解,但对于理解排放对空气质量的贡献非常重要。在这里,我们研究了 2016 年春季韩国-美国空气质量实地研究期间在朝鲜半岛上有机硝酸盐(RONO)在 SOA 形成中的作用,该研究以全球城市中 RONO 气溶胶为模型。我们利用基于飞机的颗粒相和总(气体+颗粒)RONO 测量来探索 RONO 的相分配。这些测量表明,RONO 平均有四分之一处于凝聚相,我们估计约 15%的有机气溶胶(OA)质量可归因于 RONO。此外,我们观察到凝聚相中的 RONO 分数随着 OA 浓度的增加而增加,这表明平衡吸收分配控制 RONO 的相分布。最后,我们在社区多尺度空气质量模型系统中对 RONO 化学和相分配进行建模。我们发现,已知的化学过程可以解释三分之一的观测到的 RONO,但仍存在大量的人为来源的半挥发性 RONO 缺失源。我们提出,这个缺失的来源可能是由于半挥发性和中等挥发性有机化合物的氧化,或者是由于经历自动氧化或多代 OH 引发氧化的人为分子。