Suppr超能文献

通过图像去噪提高亚毫米分辨率 MPRAGE 的皮质表面重建质量。

Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Austria.

出版信息

Neuroimage. 2021 Jun;233:117946. doi: 10.1016/j.neuroimage.2021.117946. Epub 2021 Mar 10.

Abstract

Automatic cerebral cortical surface reconstruction is a useful tool for cortical anatomy quantification, analysis and visualization. Recently, the Human Connectome Project and several studies have shown the advantages of using T-weighted magnetic resonance (MR) images with sub-millimeter isotropic spatial resolution instead of the standard 1-mm isotropic resolution for improved accuracy of cortical surface positioning and thickness estimation. Nonetheless, sub-millimeter resolution images are noisy by nature and require averaging multiple repetitions to increase the signal-to-noise ratio for precisely delineating the cortical boundary. The prolonged acquisition time and potential motion artifacts pose significant barriers to the wide adoption of cortical surface reconstruction at sub-millimeter resolution for a broad range of neuroscientific and clinical applications. We address this challenge by evaluating the cortical surface reconstruction resulting from denoised single-repetition sub-millimeter T-weighted images. We systematically characterized the effects of image denoising on empirical data acquired at 0.6 mm isotropic resolution using three classical denoising methods, including denoising convolutional neural network (DnCNN), block-matching and 4-dimensional filtering (BM4D) and adaptive optimized non-local means (AONLM). The denoised single-repetition images were found to be highly similar to 6-repetition averaged images, with a low whole-brain averaged mean absolute difference of ~0.016, high whole-brain averaged peak signal-to-noise ratio of ~33.5 dB and structural similarity index of ~0.92, and minimal gray matter-white matter contrast loss (2% to 9%). The whole-brain mean absolute discrepancies in gray matter-white matter surface placement, gray matter-cerebrospinal fluid surface placement and cortical thickness estimation were lower than 165 μm, 155 μm and 145 μm-sufficiently accurate for most applications. These discrepancies were approximately one third to half of those from 1-mm isotropic resolution data. The denoising performance was equivalent to averaging ~2.5 repetitions of the data in terms of image similarity, and 1.6-2.2 repetitions in terms of the cortical surface placement accuracy. The scan-rescan variability of the cortical surface positioning and thickness estimation was lower than 170 μm. Our unique dataset and systematic characterization support the use of denoising methods for improved cortical surface reconstruction at sub-millimeter resolution.

摘要

自动大脑皮质表面重建是皮质解剖学定量、分析和可视化的有用工具。最近,人类连接组计划和几项研究表明,使用具有亚毫米各向同性空间分辨率的 T 加权磁共振(MR)图像而不是标准的 1 毫米各向同性分辨率来提高皮质表面定位和厚度估计的准确性具有优势。尽管如此,亚毫米分辨率的图像本质上是嘈杂的,需要平均多次重复以增加信噪比,从而精确描绘皮质边界。较长的采集时间和潜在的运动伪影对在亚毫米分辨率下广泛采用皮质表面重建技术以用于广泛的神经科学和临床应用构成了重大障碍。我们通过评估经去噪的单次重复亚毫米 T 加权图像的皮质表面重建来解决这一挑战。我们系统地描述了使用三种经典去噪方法(包括去噪卷积神经网络(DnCNN)、块匹配和 4 维滤波(BM4D)和自适应优化非局部均值(AONLM))对以 0.6 毫米各向同性分辨率采集的经验数据进行图像去噪的影响。结果表明,去噪的单次重复图像与 6 次重复平均图像高度相似,全脑平均绝对差异约为 0.016,全脑平均峰值信噪比约为 33.5dB,结构相似性指数约为 0.92,灰质-白质对比度损失最小(2%至 9%)。灰质-白质表面定位、灰质-脑脊液表面定位和皮质厚度估计的全脑平均绝对差异小于 165μm,足以满足大多数应用的要求,误差在 155μm 以内,145μm 以内。这些差异大约是 1 毫米各向同性分辨率数据的三分之一到一半。从图像相似性的角度来看,去噪性能与平均数据的 2.5 次重复等效,从皮质表面定位精度的角度来看,与 1.6-2.2 次重复等效。皮质表面定位和厚度估计的扫描-再扫描可变性小于 170μm。我们独特的数据集和系统的特征支持使用去噪方法来提高亚毫米分辨率的皮质表面重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7171/8421085/e91b82c29642/nihms-1716891-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验