Suppr超能文献

《三级护理中心急诊患者道路交通伤害:描述性横断面研究》

Road Traffic Injuries among Patients Visiting the Emergency Department in a Tertiary Care Centre: A Descriptive Cross-sectional Study.

机构信息

Department of Forensic Medicine, Lumbini Medical College, Tansen, Palpa, Nepal.

Department of Orthopedics and Trauma, Lumbini Medical College, Tansen, Palpa, Nepal.

出版信息

JNMA J Nepal Med Assoc. 2022 Nov 2;60(255):922-926. doi: 10.31729/jnma.7895.

Abstract

INTRODUCTION

Road traffic injuries are preventable yet one of the most neglected public health issues. Road traffic injuries not only impact the health of the victim but also cause financial burden to the entire family. This study aimed to find out the prevalence of road traffic injuries in patients visiting the Emergency Department in a tertiary care centre.

METHODS

A descriptive study was conducted among patients visiting the Emergency Department in a tertiary care centre from 1 January 2021 to 30 June 2021 after receiving ethical approval from the Institutional Review Committee (Reference number: IRC-LMC 07-J/020). Demographic information of the patients, accident profile and type of intervention at the hospital, and outcome were studied. Point estimate and 95% Confidence Interval were calculated.

RESULTS

Among 8,765 patients visiting the emergency department, road traffic injuries were seen in 112 (1.28%) (1.04-1.52, 95% Confidence Interval).

CONCLUSIONS

The prevalence of road traffic injuries was found to be similar to other studies conducted in a similar setting.

KEYWORDS

automobiles; demography; Nepal; soft tissue injuries; traffic accidents.

摘要

简介

道路交通伤害是可以预防的,但却是最被忽视的公共卫生问题之一。道路交通伤害不仅影响受害者的健康,还会给整个家庭带来经济负担。本研究旨在调查在一家三级保健中心的急诊科就诊的患者中道路交通伤害的发生率。

方法

在获得机构审查委员会(参考编号:IRC-LMC 07-J/020)的伦理批准后,对 2021 年 1 月 1 日至 2021 年 6 月 30 日期间在一家三级保健中心急诊科就诊的患者进行了一项描述性研究。研究了患者的人口统计学信息、事故概况和医院干预的类型以及结局。计算了点估计值和 95%置信区间。

结果

在 8765 名就诊于急诊部的患者中,有 112 名(1.28%)(1.04-1.52,95%置信区间)发生了道路交通伤害。

结论

道路交通伤害的发生率与在类似环境中进行的其他研究相似。

关键词

汽车;人口统计学;尼泊尔;软组织损伤;交通事故。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c536/9795097/6eaf958db47d/JNMA-60-255-922-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验