Suppr超能文献

利用公开可用的甲基化数据对罕见疾病进行DNA甲基化特征分类。

DNA methylation signature classification of rare disorders using publicly available methylation data.

作者信息

Hildonen Mathis, Ferilli Marco, Hjortshøj Tina Duelund, Dunø Morten, Risom Lotte, Bak Mads, Ek Jakob, Møller Rikke S, Ciolfi Andrea, Tartaglia Marco, Tümer Zeynep

机构信息

Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.

Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.

出版信息

Clin Genet. 2023 Jun;103(6):688-692. doi: 10.1111/cge.14304. Epub 2023 Feb 6.

Abstract

Disease-specific DNA methylation patterns (DNAm signatures) have been established for an increasing number of genetic disorders and represent a valuable tool for classification of genetic variants of uncertain significance (VUS). Sample size and batch effects are critical issues for establishing DNAm signatures, but their impact on the sensitivity and specificity of an already established DNAm signature has not previously been tested. Here, we assessed whether publicly available DNAm data can be employed to generate a binary machine learning classifier for VUS classification, and used variants in KMT2D, the gene associated with Kabuki syndrome, together with an existing DNAm signature as proof-of-concept. Using publicly available methylation data for training, a classifier for KMT2D variants was generated, and individuals with molecularly confirmed Kabuki syndrome and unaffected individuals could be correctly classified. The present study documents the clinical utility of a robust DNAm signature even for few affected individuals, and most importantly, underlines the importance of data sharing for improved diagnosis of rare genetic disorders.

摘要

针对越来越多的遗传性疾病,已经建立了疾病特异性DNA甲基化模式(DNAm特征),这是对意义未明的遗传变异(VUS)进行分类的一种有价值的工具。样本量和批次效应是建立DNAm特征的关键问题,但它们对已建立的DNAm特征的敏感性和特异性的影响此前尚未得到检验。在此,我们评估了公开可用的DNAm数据是否可用于生成用于VUS分类的二元机器学习分类器,并使用与歌舞伎综合征相关的基因KMT2D中的变异以及现有的DNAm特征作为概念验证。利用公开可用的甲基化数据进行训练,生成了一个针对KMT2D变异的分类器,分子确诊的歌舞伎综合征患者和未受影响的个体能够被正确分类。本研究证明了即使对于少数受影响个体,稳健的DNAm特征也具有临床实用性,最重要的是,强调了数据共享对于改善罕见遗传性疾病诊断的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验