Zhang Huibo, Chen Lulu, Li Lan, Liu Yang, Das Barnali, Zhai Shuang, Tan Juan, Jiang Yan, Turco Simona, Yao Yi, Frishman Dmitrij
Department of Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
NPJ Precis Oncol. 2025 Mar 19;9(1):76. doi: 10.1038/s41698-025-00866-0.
The density of tumor-infiltrating lymphocytes (TILs) serves as a valuable indicator for predicting anti-tumor responses, but its broad impact across various types of cancers remains underexplored. We introduce TILScout, a pan-cancer deep-learning approach to compute patch-level TIL scores from whole slide images (WSIs). TILScout achieved accuracies of 0.9787 and 0.9628, and AUCs of 0.9988 and 0.9934 in classifying WSI patches into three categories-TIL-positive, TIL-negative, and other/necrotic-on validation and independent test sets, respectively, surpassing previous studies. The biological significance of TILScout-derived TIL scores across 28 cancers was validated through comprehensive functional and correlational analyses. A consistent decrease in TIL scores with an increase in cancer stage provides direct evidence that the lower TIL content may stimulate cancer progression. Additionally, TIL scores correlated with immune checkpoint gene expression and genomic variation in common cancer driver genes. Our comprehensive pan-cancer survey highlights the critical prognostic significance of TILs within the tumor microenvironment.
肿瘤浸润淋巴细胞(TILs)的密度是预测抗肿瘤反应的一个重要指标,但其在各类癌症中的广泛影响仍未得到充分探索。我们引入了TILScout,这是一种泛癌深度学习方法,用于从全切片图像(WSIs)中计算斑块水平的TIL评分。在将WSI斑块分为TIL阳性、TIL阴性和其他/坏死三类的验证集和独立测试集上,TILScout的准确率分别达到0.9787和0.9628,曲线下面积(AUC)分别为0.9988和0.9934,超过了以往的研究。通过全面的功能和相关性分析,验证了TILScout得出的TIL评分在28种癌症中的生物学意义。TIL评分随着癌症分期的增加而持续下降,这直接证明了较低的TIL含量可能会促进癌症进展。此外,TIL评分与免疫检查点基因表达以及常见癌症驱动基因的基因组变异相关。我们全面的泛癌调查突出了肿瘤微环境中TILs的关键预后意义。