Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, NS, Canada.
Division of Geriatric Medicine, Dalhousie University, Halifax, B3H 2E1, NS, Canada.
Geroscience. 2023 Jun;45(3):1687-1711. doi: 10.1007/s11357-022-00723-z. Epub 2023 Jan 27.
We investigated efficient representations of binarized health deficit data using the 2001-2002 National Health and Nutrition Examination Survey (NHANES). We compared the abilities of features to compress health deficit data and to predict adverse outcomes. We used principal component analysis (PCA) and several other dimensionality reduction techniques, together with several varieties of the frailty index (FI). We observed that the FI approximates the first - primary - component obtained by PCA and other compression techniques. Most adverse outcomes were well predicted using only the FI. While the FI is therefore a useful technique for compressing binary deficits into a single variable, additional dimensions were needed for high-fidelity compression of health deficit data. Moreover, some outcomes - including inflammation and metabolic dysfunction - showed high-dimensional behaviour. We generally found that clinical data were easier to compress than lab data. Our results help to explain the success of the FI as a simple dimensionality reduction technique for binary health data. We demonstrate how PCA extends the FI, providing additional health information, and allows us to explore system dimensionality and complexity. PCA is a promising tool for determining and exploring collective health features from collections of binarized biomarkers.
我们利用 2001-2002 年全国健康与营养调查(NHANES)研究了二进制健康缺陷数据的有效表示方法。我们比较了特征压缩健康缺陷数据和预测不良结果的能力。我们使用了主成分分析(PCA)和其他几种降维技术,以及几种脆弱指数(FI)。我们观察到 FI 近似于 PCA 和其他压缩技术获得的第一主成分。仅使用 FI 就能很好地预测大多数不良结果。因此,FI 是将二进制缺陷压缩为单个变量的有用技术,但需要额外的维度才能对健康缺陷数据进行高保真压缩。此外,一些结果-包括炎症和代谢功能障碍-表现出高维行为。我们通常发现临床数据比实验室数据更容易压缩。我们的结果有助于解释 FI 作为一种简单的二进制健康数据降维技术的成功。我们展示了 PCA 如何扩展 FI,提供额外的健康信息,并允许我们探索系统的维度和复杂性。PCA 是从二进制生物标志物集合中确定和探索集体健康特征的有前途的工具。