Suppr超能文献

可解释机器学习在老龄化健康高维轨迹中的应用。

Interpretable machine learning for high-dimensional trajectories of aging health.

机构信息

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.

出版信息

PLoS Comput Biol. 2022 Jan 10;18(1):e1009746. doi: 10.1371/journal.pcbi.1009746. eCollection 2022 Jan.

Abstract

We have built a computational model for individual aging trajectories of health and survival, which contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information. We combine techniques of modern machine learning with an interpretable interaction network, where health variables are coupled by explicit pair-wise interactions within a stochastic dynamical system. Our dynamic joint interpretable network (DJIN) model is scalable to large longitudinal data sets, is predictive of individual high-dimensional health trajectories and survival from baseline health states, and infers an interpretable network of directed interactions between the health variables. The network identifies plausible physiological connections between health variables as well as clusters of strongly connected health variables. We use English Longitudinal Study of Aging (ELSA) data to train our model and show that it performs better than multiple dedicated linear models for health outcomes and survival. We compare our model with flexible lower-dimensional latent-space models to explore the dimensionality required to accurately model aging health outcomes. Our DJIN model can be used to generate synthetic individuals that age realistically, to impute missing data, and to simulate future aging outcomes given arbitrary initial health states.

摘要

我们构建了一个用于个体健康和生存轨迹的计算模型,其中包含身体、功能和生物学变量,并根据人口统计学、生活方式和医疗背景信息进行了条件设置。我们将现代机器学习技术与可解释的交互网络相结合,在这个网络中,健康变量通过随机动力学系统中的显式两两相互作用进行耦合。我们的动态联合可解释网络(DJIN)模型可扩展到大型纵向数据集,能够从基线健康状态预测个体的高维健康轨迹和生存,并推断出健康变量之间的可解释的有向相互作用网络。该网络确定了健康变量之间合理的生理联系以及强连接的健康变量簇。我们使用英国老龄化纵向研究(ELSA)的数据来训练我们的模型,并表明它在健康结果和生存方面的表现优于多个专门的线性模型。我们将我们的模型与灵活的低维潜在空间模型进行比较,以探索准确建模老化健康结果所需的维度。我们的 DJIN 模型可用于生成逼真老化的合成个体、插补缺失数据以及根据任意初始健康状态模拟未来的老化结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2020/8782527/5301f760e333/pcbi.1009746.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验