Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
J Gerontol A Biol Sci Med Sci. 2024 Oct 1;79(10). doi: 10.1093/gerona/glae021.
Widespread interest in nondestructive biomarkers of aging has led to a multitude of biological ages that each proffers a "true" health-adjusted individual age. Although each measure provides salient information on the aging process, they are each univariate, in contrast to the "hallmark" and "pillar" theories of aging, which are explicitly multidimensional, multicausal, and multiscale. Fortunately, multiple biological ages can be systematically combined into a multidimensional network representation. The interaction network between these biological ages permits analysis of the multidimensional effects of aging, as well as quantification of causal influences during both natural aging and, potentially, after anti-aging intervention. The behavior of the system as a whole can then be explored using dynamical network stability analysis, which identifies new, efficient biomarkers that quantify long-term resilience scores on the timescale between measurements (years). We demonstrate this approach using a set of 8 biological ages from the longitudinal Swedish Adoption/Twin Study of Aging (SATSA). After extracting an interaction network between these biological ages, we observed that physiological age, a proxy for cardiometabolic health, serves as a central node in the network, implicating it as a key vulnerability for slow, age-related decline. We furthermore show that while the system as a whole is stable, there is a weakly stable direction along which recovery is slow-on the timescale of a human lifespan. This slow direction provides an aging biomarker, which correlates strongly with chronological age and predicts longitudinal decline in health-suggesting that it estimates an important driver of age-related changes.
广泛关注衰老的非破坏性生物标志物,导致了多种生物学年龄,每种年龄都提供了一个“真正”的健康调整后的个体年龄。虽然每种测量方法都提供了关于衰老过程的重要信息,但它们都是单变量的,与衰老的“标志性”和“支柱”理论形成对比,后者是明确的多维、多因和多尺度的。幸运的是,多个生物学年龄可以系统地组合成一个多维网络表示。这些生物年龄之间的交互网络允许分析衰老的多维影响,并量化自然衰老期间以及潜在的抗衰老干预期间的因果影响。然后可以使用动态网络稳定性分析来探索系统整体的行为,该分析确定了新的、有效的生物标志物,这些生物标志物在测量(年)之间的时间尺度上量化了长期弹性得分。我们使用一组来自纵向瑞典收养/双胞胎衰老研究 (SATSA) 的 8 种生物学年龄来演示这种方法。在提取这些生物学年龄之间的交互网络之后,我们观察到生理年龄,一种心血管代谢健康的代理,作为网络中的一个中心节点,暗示它是导致缓慢、与年龄相关的衰退的关键弱点。我们还表明,虽然整个系统是稳定的,但存在一个弱稳定的方向,沿着这个方向恢复缓慢-在人类寿命的时间尺度上。这个缓慢的方向提供了一个衰老的生物标志物,它与实际年龄强烈相关,并预测健康的纵向下降-表明它估计了与年龄相关变化的一个重要驱动因素。