Kozak Karol, Seidel André, Matvieieva Nataliia, Neupetsch Constanze, Teicher Uwe, Lemme Gordon, Ben Achour Anas, Barth Martin, Ihlenfeldt Steffen, Drossel Welf-Guntram
Center for Evidence-Based Healthcare, Technische Universität Dresden, Dresden, Germany.
Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany.
JMIR Med Inform. 2023 Jan 27;11:e41614. doi: 10.2196/41614.
The electronic health record (EHR) targets systematized collection of patient-specific, electronically stored health data. The EHR is an evolving concept driven by ongoing developments and open or unclear legal issues concerning medical technologies, cross-domain data integration, and unclear access roles. Consequently, an interdisciplinary discourse based on representative pilot scenarios is required to connect previously unconnected domains.
We address cross-domain data integration including access control using the specific example of a unique device identification (UDI)-expanded hip implant. In fact, the integration of technical focus data into the hospital information system (HIS) is considered based on surgically relevant information. Moreover, the acquisition of social focus data based on mobile health (mHealth) is addressed, covering data integration and networking with therapeutic intervention and acute diagnostics data.
In addition to the additive manufacturing of a hip implant with the integration of a UDI, we built a database that combines database technology and a wrapper layer known from extract, transform, load systems and brings it into a SQL database, WEB application programming interface (API) layer (back end), interface layer (rest API), and front end. It also provides semantic integration through connection mechanisms between data elements.
A hip implant is approached by design, production, and verification while linking operation-relevant specifics like implant-bone fit by merging patient-specific image material (computed tomography, magnetic resonance imaging, or a biomodel) and the digital implant twin for well-founded selection pairing. This decision-facilitating linkage, which improves surgical planning, relates to patient-specific postoperative influencing factors during the healing phase. A unique product identification approach is presented, allowing a postoperative read-out with state-of-the-art hospital technology while enabling future access scenarios for patient and implant data. The latter was considered from the manufacturing perspective using the process manufacturing chain for a (patient-specific) implant to identify quality-relevant data for later access. In addition, sensor concepts were identified to use to monitor the patient-implant interaction during the healing phase using wearables, for example. A data aggregation and integration concept for heterogeneous data sources from the considered focus domains is also presented. Finally, a hierarchical data access concept is shown, protecting sensitive patient data from misuse using existing scenarios.
Personalized medicine requires cross-domain linkage of data, which, in turn, require an appropriate data infrastructure and adequate hierarchical data access solutions in a shared and federated data space. The hip implant is used as an example for the usefulness of cross-domain data linkage since it bundles social, medical, and technical aspects of the implantation. It is necessary to open existing databases using interfaces for secure integration of data from end devices and to assure availability through suitable access models while guaranteeing long-term, independent data persistence. A suitable strategy requires the combination of technical solutions from the areas of identity and trust, federated data storage, cryptographic procedures, and software engineering as well as organizational changes.
电子健康记录(EHR)旨在系统地收集特定患者的电子存储健康数据。EHR是一个不断发展的概念,受到医疗技术、跨域数据集成和不明访问角色等方面持续发展以及开放或不明法律问题的驱动。因此,需要基于具有代表性的试点场景进行跨学科讨论,以连接以前未连接的领域。
我们以独特设备识别(UDI)扩展的髋关节植入物为例,探讨跨域数据集成,包括访问控制。实际上,基于手术相关信息,考虑将技术重点数据集成到医院信息系统(HIS)中。此外,还探讨了基于移动健康(mHealth)获取社会重点数据,涵盖数据集成以及与治疗干预和急性诊断数据的联网。
除了增材制造带有UDI集成的髋关节植入物外,我们构建了一个数据库,该数据库结合了数据库技术以及从提取、转换、加载系统中已知的包装层,并将其引入SQL数据库、WEB应用程序编程接口(API)层(后端)、接口层(REST API)和前端。它还通过数据元素之间的连接机制提供语义集成。
在设计、生产和验证髋关节植入物时,通过合并患者特定的图像材料(计算机断层扫描、磁共振成像或生物模型)和数字植入物孪生体来关联与手术相关的细节,如植入物与骨骼的适配情况,以便进行有充分依据的选择配对。这种有助于决策的关联改善了手术规划,涉及愈合阶段患者特定的术后影响因素。提出了一种独特的产品识别方法,允许使用先进的医院技术进行术后读取,同时为患者和植入物数据启用未来的访问场景。从制造角度出发,使用(患者特定的)植入物的过程制造链来识别质量相关数据以供后续访问,从而考虑了后者。此外,还确定了传感器概念,例如使用可穿戴设备在愈合阶段监测患者与植入物的相互作用。还提出了一个针对所考虑重点领域的异构数据源的数据聚合和集成概念。最后,展示了一种分层数据访问概念,利用现有场景保护敏感患者数据不被滥用。
个性化医疗需要跨域数据链接,这反过来又需要在共享和联合的数据空间中具备适当的数据基础设施和足够的分层数据访问解决方案。髋关节植入物被用作跨域数据链接有用性的示例,因为它整合了植入手术的社会、医疗和技术方面。有必要通过接口开放现有数据库,以安全集成来自终端设备的数据,并通过合适的访问模型确保可用性,同时保证长期、独立的数据持久性。合适的策略需要结合身份和信任、联合数据存储、加密程序、软件工程等领域的技术解决方案以及组织变革。