Suppr超能文献

一种预测次年谁将发展为近视作为定义近视前期标准的模型的开发与验证

Development and Validation of a Model to Predict Who Will Develop Myopia in the Following Year as a Criterion to Define Premyopia.

作者信息

Chen Yanxian, Tan Cheng, Foo Li-Lian, He Siyan, Zhang Jian, Bulloch Gabriella, Saw Seang-Mei, Li Jinying, Morgan Ian, Guo Xiaobo, He Mingguang

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.

出版信息

Asia Pac J Ophthalmol (Phila). 2023;12(1):38-43. doi: 10.1097/APO.0000000000000591. Epub 2023 Jan 11.

Abstract

PURPOSE

To develop and validate models to predict who will develop myopia in the following year based on cycloplegic refraction or ocular biometry and to identify thresholds of premyopia.

METHODS

Prospective longitudinal data of nonmyopic children at baseline from the Guangzhou Twins Eye Study and the Guangzhou Outdoor Activity Longitudinal Study were used as the training set, and the Singapore Cohort Study of the Risk factors for Myopia study formed the external validation set. Age, sex, cycloplegic refraction, ocular biometry, uncorrected visual acuity, and parental myopia were integrated into 3 logistic regression models to predict the onset of myopia in the following year. Premyopia cutoffs and an integer risk score system were derived based on the identified risk.

RESULTS

In total, 2896 subjects with at least 2 visits were included. Cycloplegic refraction at baseline is a better predictor to identify the children with myopia onset [C-statistic=0.91, 95% confidence interval (CI), 0.87-0.94; C-statistic=0.92, 95% CI, 0.92-0.92 for internal and external validation, respectively], comparing to axial length, corneal curvature radius (CR) and anterior chamber depth (C-statistic=0.81, 95% CI, 0.73-0.88; C-statistic=0.80, 95% CI, 0.79-0.80, respectively), and axial length/CR (C-statistic=0.78, 95% CI, 0.71-0.85; C-statistic=0.76, 95% CI, 0.75-0.76). With a risk of >70%, the definitions of premyopia indicating approaching myopia onset were 0.00 D for 6-8 years and -0.25 D for ≥9 years in children with 2 myopic parents.

CONCLUSIONS

Either cycloplegic refraction or ocular biometry can predict 1-year risk of myopia. Premyopia can be successfully defined through risk assessments based on children's age and predict who would require more aggressive myopia prophylaxis.

摘要

目的

建立并验证基于散瞳验光或眼生物测量来预测次年谁会发生近视的模型,并确定近视前期的阈值。

方法

将广州双胞胎眼研究和广州户外活动纵向研究中基线时非近视儿童的前瞻性纵向数据用作训练集,新加坡近视危险因素队列研究作为外部验证集。将年龄、性别、散瞳验光、眼生物测量、未矫正视力和父母近视情况纳入3个逻辑回归模型,以预测次年近视的发生。根据确定的风险得出近视前期临界值和整数风险评分系统。

结果

总共纳入了2896名至少有2次随访的受试者。与眼轴长度、角膜曲率半径(CR)和前房深度相比(眼轴长度、角膜曲率半径和前房深度的C统计量分别为0.81,95%置信区间[CI],0.73 - 0.88;0.80,95%CI,0.79 - 0.80),以及眼轴长度/CR相比(眼轴长度/CR的C统计量为0.78,95%CI,0.71 - 0.85;0.76,95%CI,0.75 - 0.76),基线时的散瞳验光在识别近视发病儿童方面是更好的预测指标[C统计量 = 0.91,95%置信区间(CI),0.87 - 0.94;内部和外部验证的C统计量分别为0.92,95%CI,0.92 - 0.92]。对于有2名近视父母的儿童,近视前期提示近视发病风险增加的定义为:6 - 8岁时为0.00 D,≥9岁时为 - 0.25 D,风险>70%。

结论

散瞳验光或眼生物测量均可预测1年的近视风险。通过基于儿童年龄的风险评估可以成功定义近视前期,并预测谁需要更积极的近视预防措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验