Wlazłowski Gabriel, Xhani Klejdja, Tylutki Marek, Proukakis Nikolaos P, Magierski Piotr
Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland.
Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA.
Phys Rev Lett. 2023 Jan 13;130(2):023003. doi: 10.1103/PhysRevLett.130.023003.
We characterize numerically the dominant dynamical regimes in a superfluid ultracold fermionic Josephson junction. Beyond the coherent Josephson plasma regime, we discuss the onset and physical mechanism of dissipation due to the superflow exceeding a characteristic speed, and provide clear evidence distinguishing its physical mechanism across the weakly and strongly interacting limits, despite qualitative dynamics of global characteristics being only weakly sensitive to the operating dissipative mechanism. Specifically, dissipation in the strongly interacting regime occurs through the phase-slippage process, caused by the emission and propagation of quantum vortices, and sound waves-similar to the Bose-Einstein condensation limit. Instead, in the weak interaction limit, the main dissipative channel arises through the pair-breaking mechanism.
我们通过数值方法刻画了超流超冷费米子约瑟夫森结中的主导动力学机制。除了相干约瑟夫森等离子体机制外,我们讨论了由于超流超过特征速度而导致的耗散的起始和物理机制,并且提供了明确的证据来区分其在弱相互作用和强相互作用极限下的物理机制,尽管全局特征的定性动力学仅对运行的耗散机制弱敏感。具体而言,在强相互作用机制中,耗散通过量子涡旋的发射和传播以及声波引起的相位滑移过程发生,这与玻色 - 爱因斯坦凝聚极限情况类似。相反,在弱相互作用极限下,主要的耗散通道通过配对破坏机制产生。