Wlazłowski Gabriel, Forbes Michael McNeil, Sarkar Saptarshi Rajan, Marek Andreas, Szpindler Maciej
Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland.
Department of Physics, University of Washington, Seattle, WA 98195-1560, USA.
PNAS Nexus. 2024 Apr 15;3(5):pgae160. doi: 10.1093/pnasnexus/pgae160. eCollection 2024 May.
Ultracold atoms provide a platform for analog quantum computer capable of simulating the quantum turbulence that underlies puzzling phenomena like pulsar glitches in rapidly spinning neutron stars. Unlike other platforms like liquid helium, ultracold atoms have a viable theoretical framework for dynamics, but simulations push the edge of current classical computers. We present the largest simulations of fermionic quantum turbulence to date and explain the computing technology needed, especially improvements in the Eigenvalue soLvers for Petaflop Applications library that enable us to diagonalize matrices of record size (millions by millions). We quantify how dissipation and thermalization proceed in fermionic quantum turbulence by using the internal structure of vortices as a new probe of the local effective temperature. All simulation data and source codes are made available to facilitate rapid scientific progress in the field of ultracold Fermi gases.
超冷原子为模拟量子湍流的模拟量子计算机提供了一个平台,这种量子湍流是快速旋转的中子星中脉冲星 glitch 等令人困惑的现象的基础。与液氦等其他平台不同,超冷原子具有可行的动力学理论框架,但模拟超出了当前经典计算机的能力范围。我们展示了迄今为止最大规模的费米子量子湍流模拟,并解释了所需的计算技术,特别是针对百亿亿次应用的特征值求解器库的改进,这使我们能够对角化创纪录大小(数百万乘以数百万)的矩阵。我们通过使用涡旋的内部结构作为局部有效温度的新探针,对费米子量子湍流中的耗散和热化过程进行了量化。所有模拟数据和源代码均可获取,以促进超冷费米气体领域的快速科学进展。